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Abstract

We propose a new statistical approach to the problem of inlier-based outlier detec-
tion, i.e., finding outliers in the test set based on the training set consisting only
of inliers. Our key idea is to use the ratio of training and test data densities as
an outlier score. This approach is expected to have better performance even in
high-dimensional problems since methods for directly estimating the density ratio
without going through density estimation are available. Among various density ra-
tio estimation methods, we employ the method called unconstrained least-squares
importance fitting (uLSIF) since it is equipped with natural cross-validation proce-
dures, allowing us to objectively optimize the value of tuning parameters such as
the regularization parameter and the kernel width. Furthermore, uLSIF offers a
closed-form solution as well as a closed-form formula for the leave-one-out error, so
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it is computationally very efficient and is scalable to massive datasets. Simulations
with benchmark and real-world datasets illustrate the usefulness of the proposed
approach.

Keywords

outlier detection, density ratio, importance, unconstrained least-squares importance
fitting (uLSIF).

1 Introduction

The goal of outlier detection (a.k.a. anomaly detection, novelty detection, or one-class clas-
sification) is to find uncommon instances (‘outliers’) in a given dataset. Outlier detection
has been used in various applications such as defect detection from behavior patterns of
industrial machines (Fujimaki, Yairi and Machida, 2005; Idé and Kashima, 2004), intru-
sion detection in network systems (Yamanishi, Takeuchi, Williams and Milne, 2004), and
topic detection in news documents (Manevitz and Yousef, 2002). Recent studies include
finding unusual patterns in time-series (Yankov, Keogh and Rebbapragada, 2008), discov-
ery of spatio-temporal changes in time-evolving graphs (Chan, Bailey and Leckie, 2008),
self-propagating worm detection in information systems (Jiang and Zhu, 2009), and iden-
tification of inconsistent records in construction equipment data (Fan, Zäıane, Foss and
Wu, 2009). Since outlier detection is useful in various applications it has been a ac-
tive research topic in statistics, machine learning, and data mining communities for
decades (Hodge and Austin, 2004).

A standard outlier detection problem falls into the category of unsupervised learning
due to lack of prior knowledge on the ‘anomalous data’. In contrast, Gao, Cheng and
Tan (2006a) and Gao, Cheng and Tan (2006b) addressed the problem of semi-supervised
outlier detection where some examples of outlier and inlier are available as a training set.
The semi-supervised outlier detection methods could perform better than unsupervised
methods thanks to additional label information, but such outlier samples for training are
not always available in practice. Furthermore, the type of outliers may be diverse and thus
the semi-supervised methods—learning from known types of outliers—are not necessarily
useful in detecting unknown types of outliers.

In this paper, we address the problem of inlier-based outlier detection where examples
of inlier are available. More formally, the inlier-based outlier detection problem is to
find outlier instances in the test set based on the training set consisting only of inlier
instances. The setting of inlier-based outlier detection would be more practical than the
semi-supervised setting since inlier samples are often available abundantly. For example,
in defect detection of industrial machines, we already know that there is no outlier (i.e.,
a defect) in the past since no failure has been observed in the machinery. Therefore, it is
reasonable to separate the measurement data into a training set consisting only of inlier
samples observed in the past and the test set consisting of recent samples from which we
try to find outliers.
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As opposed to supervised learning, the outlier detection problem is vague and it is not
possible to universally define what the outliers are. In this paper, we consider a statistical
framework and regard instances with low probability densities as outliers. In light of
inlier-based outlier detection, outliers may be identified via density estimation of inlier
samples. However, density estimation is known to be a hard problem particularly in high
dimensions, so outlier detection via density estimation may not work well in practice.

To avoid density estimation, we may use One-class Support Vector Machine (OSVM)
(Schölkopf, Platt, Shawe-Taylor, Smola and Williamson, 2001) or Support Vector Data
Description (SVDD) (Tax and Duin, 2004), which finds an inlier region containing a
certain fraction of training instances; samples outside the inlier region are regarded as
outliers. However, these methods cannot make use of inlier information available in the
inlier-based settings. Furthermore, the solutions of OSVM and SVDD depend heavily on
the choice of tuning parameters (e.g., the Gaussian kernel width) and there seems to be
no reasonable method to appropriately determine the values of the tuning parameters.

To overcome the weakness of the existing methods, we propose a new approach
to inlier-based outlier detection. Our key idea is not to directly model the training
and test data densities, but only to estimate the ratio of training and test data den-
sities. Among existing methods of density ratio estimation (Qin, 1998; Cheng and
Chu, 2004; Huang, Smola, Gretton, Borgwardt and Schölkopf, 2007; Bickel, Brückner and
Scheffer, 2007; Sugiyama, Nakajima, Kashima, von Bünau and Kawanabe, 2008; Nguyen,
Wainwright and Jordan, 2008; Sugiyama, Suzuki, Nakajima, Kashima, von Bünau
and Kawanabe, 2008; Kanamori, Hido and Sugiyama, 2009a; Kanamori, Hido and
Sugiyama, 2009b), we employ an algorithm called unconstrained Least-Squares Impor-
tance Fitting (uLSIF) (Kanamori, Hido and Sugiyama, 2009a; Kanamori, Hido and
Sugiyama, 2009b) for outlier detection. The reason for this choice is that uLSIF is
equipped with a variant of cross-validation (CV), so the values of tuning parameters such
as the regularization parameter can be objectively determined without subjective trial
and error. Furthermore, uLSIF-based outlier detection allows us to compute the out-
lier score just by solving a system of linear equations—the leave-one-out cross-validation
(LOOCV) error can also be computed analytically. Thus, uLSIF-based outlier detection
is computationally very efficient and therefore is scalable to massive datasets. Through
experiments using benchmark datasets and real-world datasets of failure detection in hard
disk drives and financial risk management in loan business, our approach is shown to com-
pare favorably with existing outlier detection methods and other density ratio estimation
methods both in accuracy and scalability.

This paper is an extended version of our earlier conference paper presented at IEEE
ICDM 2008 (Hido, Tsuboi, Kashima, Sugiyama and Kanamori, 2008), with more details
and additional results. The rest of this paper is organized as follows. In Section 2, we
mathematically formulate the inlier-based outlier detection problem as a density ratio
estimation problem. In Section 3, we give a comprehensive review of existing density
ratio estimation methods. In Section 4, we discuss the characteristics of the existing
density ratio estimation methods and propose a practical outlier detection procedure based
on uLSIF; illustrative numerical examples of the proposed method are also shown. In
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Section 5, we discuss the relation between the proposed uLSIF-based method and existing
outlier detection methods. In Section 6, we experimentally compare the performance of
the proposed and existing algorithms using benchmark and real-world datasets. Finally,
in Section 7, we conclude by summarizing our contributions.

2 Outlier Detection via Direct Importance Estima-

tion

In this section, we propose a new statistical approach to outlier detection.
Suppose we have two sets of samples—training samples {xtr

j }ntr
j=1 and test samples

{xte
i }nte

i=1 in a domain D (⊂ Rd). The training samples {xtr
j }ntr

j=1 are all inliers, while the
test samples {xte

i }nte
i=1 can contain some outliers. The goal of outlier detection here is to

identify outliers in the test set based on the training set consisting only of inliers. More
formally, we want to assign a suitable inlier score for the test samples—the smaller the
value of the inlier score is, the more plausible the sample is an outlier.

Let us consider a statistical framework of the inlier-based outlier detection problem:
suppose training samples {xtr

j }ntr
j=1 are independent and identically distributed (i.i.d.) fol-

lowing a training data distribution with density ptr(x) and test samples {xte
i }nte

i=1 are
i.i.d. following a test data distribution with strictly positive density pte(x). Within this
statistical framework, test samples with low training data densities are regarded as out-
liers. However, ptr(x) is not accessible in practice and density estimation is known to be
a hard problem. Therefore, merely using the training data density as an inlier score may
not be promising in practice.

In this paper, we propose to use the ratio of training and test data densities, called
the importance, as an inlier score:

w(x) =
ptr(x)

pte(x)
.

If there exists no outlier sample in the test set (i.e., the training and test data densities
are equivalent), the value of the importance is one. The importance value tends to be
small in the regions where the training data density is low and the test data density is
high. Thus samples with small importance values are plausible to be outliers.

One may suspect that this importance-based approach is not suitable when there
exist only a small number of outliers—since a small number of outliers cannot increase
the values of pte(x) significantly. However, outliers are drawn from a region with small
ptr(x) and therefore a small change in pte(x) significantly reduces the importance value.
For example, let the increase of pte(x) be ϵ = 0.01; then 1

1+ϵ
≈ 1, but 0.001

0.001+ϵ
≪ 1.

Thus the importance w(x) would be a suitable inlier score (see Section 4.3 for illustrative
examples).
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3 Direct Importance Estimation Methods

The values of the importance are unknown in practice, so we need to estimate them
from data samples. If one estimates the training and test densities separately from the
data samples, one will be able to estimate the importance just by taking the ratio of
the two estimated densities. However, this naive approach can easily suffer from the
curse of dimensionality, particularly when the data has neither low dimensionality nor a
simple distribution. As advocated by Vapnik (1998), density ratio estimation is crucial
in statistical learning, but often unnecessarily more difficult than the target problem that
one would like to solve. In our case, we would like to directly estimate the importance
values without going through density estimation. In this section, we review such direct
importance estimation methods which could be used for inlier-based outlier detection. In
fact, it has been shown that direction estimation methods work better than the two-step
approach of separately estimating the two densities and then taking their ratio (Sugiyama,
Suzuki, Nakajima, Kashima, von Bünau and Kawanabe, 2008). Therefore these methods
are expected to also work well on the inlier-based outlier detection problems.

3.1 Kernel Mean Matching (KMM)

The KMM method (Huang et al., 2007) avoids density estimation and directly gives an
estimate of the importance at test points (i.e., data points drawn from the denominator
of the ratio).

The basic idea of KMM is to find ŵ(x) such that the mean discrepancy between
nonlinearly transformed samples drawn from ptr(x) and pte(x) is minimized in a universal
reproducing kernel Hilbert space (Steinwart, 2001). The Gaussian kernel

Kσ(x,x
′) = exp

(
−∥x− x′∥2

2σ2

)
(1)

is an example of kernels that induce a universal reproducing kernel Hilbert space. It has
been shown that the solution of the following optimization problem agrees with the true
importance:

min
w

∥∥∥∥∫ Kσ(x, ·)ptr(x)dx−
∫

Kσ(x, ·)w(x)pte(x)dx
∥∥∥∥2
F

s.t.

∫
w(x)pte(x)dx = 1 and w(x) ≥ 0,

where ∥ · ∥F denotes the norm in the Gaussian reproducing kernel Hilbert space.
An empirical version of the above problem is reduced to the following quadratic pro-



Statistical Outlier Detection Using Direct Density Ratio Estimation 6

gram:

min
{wi}

nte
i=1

[
1

2

nte∑
i,i′=1

wiwi′Kσ(x
te
i ,x

te
i′ )−

nte∑
i=1

wiκi

]

s.t.

∣∣∣∣∣
nte∑
i=1

wi − nte

∣∣∣∣∣ ≤ nteϵ and 0 ≤ w1, . . . , wnte ≤ B,

where

κi =
nte

ntr

ntr∑
j=1

Kσ(x
te
i ,x

tr
j ).

σ (≥ 0), B (≥ 0), and ϵ (≥ 0) are tuning parameters. The solution {ŵi}nte
i=1 is an estimate

of the importance at the test points {xte
i }nte

i=1.
Since KMM does not require the individual density estimates, it is expected to work

well. However, the performance of KMM is dependent on the tuning parameters B, ϵ, and
σ and they cannot be simply optimized, e.g., by cross-validation (CV) since the estimates
of the importance are available only at the test points.

3.2 Logistic Regression (LogReg)

Another approach to directly estimating the importance is to use a probabilistic classifier.
Let us assign a selector variable η = 1 to training samples and η = −1 to test samples,
i.e., the training and test densities are written as

ptr(x) = p(x|η = 1),

pte(x) = p(x|η = −1).

Application of Bayes’ theorem yields that the importance can be expressed in terms
of η as follows (Qin, 1998; Cheng and Chu, 2004; Bickel et al., 2007):

w(x) =
p(η = −1)
p(η = 1)

p(η = 1|x)
p(η = −1|x)

. (2)

The probability ratio of test and training samples p(η = −1)/p(η = 1) may be simply
estimated by the ratio of the numbers of samples nte/ntr. The conditional probability
p(η|x) could be approximated by discriminating test samples from training samples using
a LogReg classifier, where η plays the role of a class variable. Thus, using the LogReg
classifier, we can estimate w(x) without going through of estimation of ptr(x) and pte(x).
Below we briefly explain the LogReg method.

The LogReg classifier based on kernel logistic regression employs the following para-
metric model for expressing the conditional probability p(η|x):

p̂(η|x) =

{
1 + exp

(
−η

m∑
ℓ=1

ζℓϕℓ(x)

)}−1

,



Statistical Outlier Detection Using Direct Density Ratio Estimation 7

where m is the number of basis functions and {ϕℓ(x)}mℓ=1 are fixed basis functions. By
substituting this equation into Eq.(2), an importance estimator is given by

ŵ(x) =
p̂(η = −1)
p̂(η = 1)

p̂(η = 1|x)
p̂(η = −1|x)

=
nte

ntr

1 + exp (
∑m

ℓ=1 ζℓϕℓ(x))

1 + exp (−
∑m

ℓ=1 ζℓϕℓ(x))

=
nte

ntr

exp

(
m∑
ℓ=1

ζℓϕℓ(x)

)
.

The parameters {ζℓ}mℓ=1 are learned by minimizing the negative regularized log-likelihood:

min
ζ

[
nte∑
i=1

log

(
1 + exp

(
m∑
ℓ=1

ζℓϕℓ(x
te
i )

))

+
ntr∑
j=1

log

(
1 + exp

(
−

m∑
ℓ=1

ζℓϕℓ(x
tr)

))
+ λ

m∑
ℓ=1

ζ2ℓ

]
.

Since the above objective function is convex, the global optimal solution can be obtained
by standard nonlinear optimization methods such as Newton’s method, conjugate gradi-
ent, and the BFGS method (Minka, 2007).

An advantage of the LogReg method is that model selection (i.e., the choice of basis
functions {ϕℓ(x)}mℓ=1 as well as the regularization parameter λ) is possible by standard CV
since the learning problem involved above is a standard supervised classification problem.

3.3 Kullback-Leibler Importance Estimation Procedure
(KLIEP)

KLIEP (Sugiyama, Nakajima, Kashima, von Bünau and Kawanabe, 2008; Sugiyama,
Suzuki, Nakajima, Kashima, von Bünau and Kawanabe, 2008) also directly gives an esti-
mate of the importance function without going through density estimation by implicitly
matching the true and estimated distributions under the Kullback-Leibler divergence.

Let us model the importance w(x) by the following linear model:

ŵ(x) =
b∑

ℓ=1

αℓφℓ(x), (3)

where {αℓ}bℓ=1 are parameters and {φℓ(x)}bℓ=1 are basis functions such that φℓ(x) ≥ 0 for
all x ∈ D and for ℓ = 1, . . . , b. Then an estimator of the training data density ptr(x) is
given by

p̂tr(x) = ŵ(x)pte(x).

In KLIEP, the parameters {αℓ}bℓ=1 are determined so that the Kullback-Leibler divergence
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from ptr(x) to p̂tr(x) is minimized:

KL[ptr(x)∥p̂tr(x)] =
∫

ptr(x) log
ptr(x)

ŵ(x)pte(x)
dx

=

∫
ptr(x) log

ptr(x)

pte(x)
dx−

∫
ptr(x) log ŵ(x)dx. (4)

The first term is a constant, so it can be safely ignored. Since p̂tr(x) (= ŵ(x)pte(x)) is a
probability density function, it should satisfy

1 =

∫
p̂tr(x)dx =

∫
ŵ(x)pte(x)dx. (5)

The KLIEP optimization problem is then given by replacing the expectations in Eqs.(4)
and (5) with empirical averages:

max
{αℓ}bℓ=1

[
ntr∑
j=1

log

(
b∑

ℓ=1

αℓφℓ(x
tr
j )

)]

s.t.
1

nte

b∑
ℓ=1

αℓ

(
nte∑
i=1

φℓ(x
te
i )

)
= 1 and α1, . . . , αb ≥ 0.

This is a convex optimization problem and the global solution can be obtained, e.g., by
simply performing gradient ascent and feasibility satisfaction iteratively. A pseudo code
of the KLIEP optimization procedure is described in Figure 1. Note that the solution
{α̂ℓ}bℓ=1 tends to be sparse (Boyd and Vandenberghe, 2004), which contributes to reducing
the computational cost in the test phase. See Nguyen et al. (2008) and Sugiyama, Suzuki,
Nakajima, Kashima, von Bünau and Kawanabe (2008) for the convergence proofs.

Model selection of KLIEP is possible by a variant of likelihood cross-validation (LCV)
(Härdle, Müller, Sperlich and Werwatz, 2004) as follows. We first divide the training
samples {xtr

j }ntr
j=1 into a learning part and a validation part, the model is trained based on

the learning part, and then its likelihood is verified using the validation part; the model
with the largest estimated likelihood is chosen. A pseudo code of LCV for KLIEP is
described in Figure 2. Note that this LCV procedure corresponds to choosing the model
with the smallest KL[ptr(x)∥p̂tr(x)].

A MATLAB R⃝ implementation of the entire KLIEP algorithm is available from the
following web page:

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/

3.4 Least-squares Importance Fitting

KLIEP employed the Kullback-Leibler divergence for measuring the discrepancy between
two densities. Least-squares importance fitting (LSIF) (Kanamori, Hido and Sugiyama,
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Input: m = {φℓ(x)}bℓ=1, {xtr
j }ntr

j=1, {xte
i }nte

i=1

Output: ŵ(x)

Aj,ℓ ←− φℓ(x
tr
j ) for j = 1, . . . , ntr and ℓ = 1, . . . , b;

bℓ ←− 1
nte

∑nte

i=1 φℓ(x
te
i )

Initialize α = (α1, . . . , αb)
⊤ (> 0) and ε (0 < ε≪ 1);

Repeat until convergence
α←− α+ εA⊤(1./Aα); % Gradient ascent

α←− α+ (1− b⊤α)b/(b⊤b);
α←− max(0,α);

α←− α/(b⊤α);
end

ŵ(x)←−
∑b

ℓ=1 αℓφℓ(x);

Figure 1: Pseudo code of the optimization procedure for KLIEP. 0 and 1 denote the
vectors with all zeros and ones, respectively. ‘./’ indicates the element-wise division and
⊤ denotes the transpose. Inequalities and the ‘max’ operation for vectors are applied in
the element-wise manner.

Input: M = {m = {φm
ℓ (x)}

bm
ℓ=1}, {xtr

j }ntr
j=1, {xte

i }nte
i=1

Output: ŵ(x)

Split {xtr
j }ntr

j=1 into R disjoint subsets {Xr}Rr=1;
for each model m ∈M

for each split r = 1, . . . , R
ŵr(x)←− KLIEP(m, {xte

i }nte
i=1, {Xj}j ̸=r);

Ĵr(m)←− 1
|Xr|
∑

x∈Xr
log ŵr(x);

end

Ĵ(m)←− 1
R

∑R
r=1 Ĵr(m);

end

m̂←− argmaxm∈M Ĵ(m);
ŵ(x)←− KLIEP(m̂, {xtr

j }ntr
j=1, {xte

i }nte
i=1);

Figure 2: Pseudo code of model selection for KLIEP by LCV.
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2009a; Kanamori, Hido and Sugiyama, 2009b) uses the squared loss for density-ratio
function fitting. The density ratio w(x) is again modeled by the linear model (3).

The parameters {αℓ}bℓ=1 in the model ŵ(x) are determined so that the following
squared error J0 is minimized:

J0(α) =
1

2

∫
(ŵ(x)− w(x))2 pte(x)dx

=
1

2

∫
ŵ(x)2pte(x)dx−

∫
ŵ(x)ptr(x)dx+

1

2

∫
w(x)ptr(x)dx, (6)

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by J :

J(α) =
1

2

∫
ŵ(x)2pte(x)dx−

∫
ŵ(x)ptr(x)dx.

Approximating the expectations in J by empirical averages, we obtain

Ĵ(α) =
1

2nte

nte∑
i=1

ŵ(xte
i )

2 − 1

ntr

ntr∑
j=1

ŵ(xtr
j )

=
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ, (7)

where

Ĥℓ,ℓ′ =
1

nte

nte∑
i=1

φℓ(x
te
i )φℓ′(x

te
i ), (8)

ĥℓ =
1

ntr

ntr∑
j=1

φℓ(x
tr
j ). (9)

Taking into account the non-negativity of the density-ratio function w(x), the optimiza-
tion problem is formulated as follows.

min
{αℓ}bℓ=1

[
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ + λ
b∑

ℓ=1

αℓ

]
s.t. α1, . . . , αb ≥ 0, (10)

where a penalty term λ
∑b

ℓ=1 αℓ is included for regularization purposes with λ (≥ 0)
being a regularization parameter. Eq.(10) is a convex quadratic programming problem
and therefore the unique global optimal solution can be computed efficiently by a standard
optimization package.

Model selection of the Gaussian width σ and the regularization parameter λ is possi-
ble by a variant of CV: First, {xte

i }nte
i=1 and {xtr

j }ntr
j=1 are divided into R disjoint subsets
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Input: Ĥ and ĥ % see Eqs.(8) and (9) for the definition
Output: entire regularization path α̂(λ) for λ ≥ 0

τ ←− 0; k ←− argmaxi{ĥi | i = 1, . . . , b};
λτ ←− ĥk; Â ←− {1, . . . , b}\{k};
α̂(λτ )←− 0b; % the vector with all zeros
While λτ > 0

Ê ←− O|Â|×b; % the matrix with all zeros

For i = 1, . . . , |Â|
Êi,ji ←− 1; % Â = {j1, . . . , j|Â| | j1 < · · · < j|Â|}

end

Ĝ←−

(
Ĥ −Ê

⊤

−Ê O|Â|×|Â|

)
;

u←− Ĝ
−1

(
ĥ
0|Â|

)
; v ←− Ĝ

−1
(

1b

0|Â|

)
;

If v ≤ 0b+|Â| % the final interval

λτ+1 ←− 0; α̂(λτ+1)←− (u1, . . . , ub)
⊤;

else % an intermediate interval

k ←− argmaxi{ui/vi | vi > 0, i = 1, . . . , b+ |Â|};
λτ+1 ←− max{0, uk/vk};
α̂(λτ+1)←− (u1, . . . , ub)

⊤ − λτ+1(v1, . . . , vb)
⊤;

If 1 ≤ k ≤ b

Â ←− Â ∪ {k};
else

Â ←− Â\{jk−b};
end

end
τ ←− τ + 1;

end

α̂(λ)←−

{
0b if λ ≥ λ0
λτ+1−λ
λτ+1−λτ

α̂(λτ ) +
λ−λτ

λτ+1−λτ
α̂(λτ+1) if λτ+1 ≤ λ ≤ λτ

Figure 3: Pseudo code for computing the entire regularization path of LSIF. The compu-

tation of Ĝ
−1

is sometimes unstable. For stabilization purposes, small positive diagonals
may be added to Ĥ .
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{X te
k }Rk=1 and {X tr

k }Rk=1, respectively. Then a density-ratio estimate ŵr(x) is obtained
using {X te

k }k ̸=r and {X tr
k }k ̸=r (i.e., without X te

r and X tr
r ), and the cost J is approximated

using the hold-out samples X te
r and X tr

r as

Ĵr =
1

2|X te
r |

∑
xte∈X te

r

ŵr(x
te)2 − 1

|X tr
r |

∑
xtr∈X tr

r

ŵr(x
tr).

This procedure is repeated for r = 1, . . . , R and its average Ĵ is used as an estimate of J :

Ĵ =
1

R

k∑
r=1

Ĵr.

The LSIF solution α̂ is shown to be piecewise linear with respect to the regularization
parameter λ (Kanamori, Hido and Sugiyama, 2009b). Therefore, the regularization path
(i.e., solutions for all λ) can be computed efficiently based on the parametric optimization
technique (Best, 1982; Efron, Hastie, Johnstone and Tibshirani, 2002; Hastie, Rosset,
Tibshirani and Zhu, 2004; Stein, Branke and Schmeck, 2008). A pseudo code of the
regularization path tracking algorithm for LSIF is described in Figure 3. This implies that
a quadratic programming solver is no longer needed for obtaining the LSIF solution—just
computing matrix inverses is enough. This highly contributes to saving the computation
time. Furthermore, the regularization path algorithm is computationally very efficient
when the solution is sparse, i.e., most of the elements are zero since the number of change
points tends to be small for sparse solutions.

An R implementation of the entire LSIF algorithm is available from the following web
page:

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/

3.5 Unconstrained Least-Squares Importance Fitting (uLSIF)

LSIF combined with regularization path tracking is computationally very efficient. How-
ever, it sometimes suffers from a numerical problem and therefore is not practically re-
liable. To cope with this problem, an approximation method called unconstrained LSIF
(uLSIF) has been introduced (Kanamori, Hido and Sugiyama, 2009a; Kanamori, Hido
and Sugiyama, 2009b).

The original objective function of uLSIF is also the squared error between the true
and estimated importance function shown in Eq.(6). Thus the optimization problem
for uLSIF is also derived as Eq.(7). The approximation idea is very simple: the non-
negativity constraint in the optimization problem (10) is dropped. This results in the
following unconstrained optimization problem.

min
{αℓ}bℓ=1

[
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ +
λ

2

b∑
ℓ=1

α2
ℓ

]
. (11)
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In the above, a quadratic regularization term λ
∑b

ℓ=1 α
2
ℓ/2 is used instead of the linear one

since the linear penalty term does not work as a regularizer without the non-negativity
constraint. Eq.(11) is an unconstrained convex quadratic programming problem, so the
solution can be analytically computed as

α̃ = (α̃1, . . . , α̃b)
⊤ = (Ĥ + λIb)

−1ĥ,

where Ib is the b-dimensional identity matrix. Since the non-negativity constraint αℓ ≥ 0
is dropped, some of the learned parameters could be negative. To compensate for this
approximation error, the solution is modified as

α̂ℓ = max(0, α̃ℓ) for ℓ = 1, . . . , b. (12)

See Kanamori, Hido and Sugiyama (2009b) for theoretical error analysis. An advantage of
the above unconstrained formulation is that the solution can be computed just by solving
a system of linear equations. Therefore, the computation is fast and stable. See Kanamori,
Suzuki and Sugiyama (2009) for theoretical analysis of the algorithmic stability.

Another, and more significant advantage of uLSIF is that the score of leave-one-out
cross-validation (LOOCV) can be computed analytically—thanks to this property, the
computational complexity for performing LOOCV is the same order as just computing
a single solution, which is explained below. In the current setting, two sets of samples
{xte

i }nte
i=1 and {xtr

j }ntr
j=1 are given, which generally have different sample size. For explaining

the idea in a simple manner, we assume that nte < ntr and xte
i and xtr

i (i = 1, . . . , nte)
are held out at the same time; {xtr

j }ntr
j=nte+1 are always used for density-ratio estimation.

Let ŵ(i)(x) be an estimate of the density ratio obtained without xte
i and xtr

i . Then
the LOOCV score is expressed as

LOOCV =
1

nte

nte∑
i=1

[
1

2
(ŵ(i)(xi))

2 − ŵ(i)(x′
i)

]
. (13)

A key trick to efficiently calculate the LOOCV score is to use the Sherman-Woodbury-
Morrison formula (Golub and Loan, 1996) for computing matrix inverses. A pseudo code
of uLSIF with LOOCV-based model selection is summarized in Figure 4. MATLABR⃝

and R implementations of the entire uLSIF algorithm are available from the following
web pages:

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/uLSIF/

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/

4 Outlier Detection by uLSIF

In this section, we discuss the characteristics of importance estimation methods reviewed
in the previous section and propose a practical outlier detection procedure based on uLSIF.
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Input: {xte
i }nte

i=1 and {xtr
j }ntr

j=1

Output: ŵ(x)

b←− min(100, ntr); n = min(nte, ntr);
Randomly choose b centers {cℓ}bℓ=1 from {xtr

j }ntr
j=1;

For each candidate of Gaussian width σ

Ĥℓ,ℓ′ =
1

nte

nte∑
i=1

exp

(
−∥x

te
i − cℓ∥2 + ∥xte

i − cℓ′∥2

2σ2

)
for ℓ, ℓ′ = 1, . . . , b;

ĥℓ =
1

ntr

ntr∑
j=1

exp

(
−
∥xtr

j − cℓ∥2

2σ2

)
for ℓ = 1, . . . , b;

Xℓ,i ←− exp

(
−||x

te
i − cℓ||2

2σ2

)
for i = 1, . . . , n and ℓ = 1, . . . , b;

X ′
ℓ,i ←− exp

(
−||x

tr
i − cℓ||2

2σ2

)
for i = 1, . . . , n and ℓ = 1, . . . , b;

For each candidate of regularization parameter λ

B̂ ←− Ĥ +
λ(nte − 1)

nte

Ib;

B0 ←− B̂
−1
ĥ1⊤

n + B̂
−1
X diag

(
ĥ

⊤
B̂

−1
X

nte1
⊤
n − 1⊤

b (X ∗ B̂
−1
X)

)
;

B1 ←− B̂
−1
X ′ + B̂

−1
X diag

(
1⊤
b (X

′ ∗ B̂
−1
X)

nte1
⊤
n − 1⊤

b (X ∗ B̂
−1
X)

)
;

B2 ←− max

(
Ob×n,

nte − 1

nte(ntr − 1)
(ntrB0 −B1)

)
;

r ←− (1⊤
b (X ∗B2))

⊤; r′ ←− (1⊤
b (X

′ ∗B2))
⊤;

LOOCV(σ, λ)←− r⊤r

2n
− 1⊤

n rtr

n
;

end
end

(σ̂, λ̂)←− argmin(σ,λ) LOOCV(σ, λ);

H̃ℓ,ℓ′ =
1

nte

nte∑
i=1

exp

(
−∥x

te
i − cℓ∥2 + ∥xte

i − cℓ′∥2

2σ̂2

)
for ℓ, ℓ′ = 1, . . . , b;

h̃ℓ =
1

ntr

ntr∑
j=1

exp

(
−
∥xtr

j − cℓ∥2

2σ̂2

)
for ℓ = 1, . . . , b;

α̂←− max(0b, (H̃ + λ̂Ib)
−1h̃);

ŵ(x)←−
b∑

ℓ=1

α̂ℓ exp

(
−∥x− cℓ∥2

2σ̂2

)
;

Figure 4: Pseudo code of uLSIF with LOOCV. B ∗ B′ denotes the element-wise mul-
tiplication of matrices B and B′ of the same size. For n-dimensional vectors b and b′,
diag

(
b
b′

)
denotes the n× n diagonal matrix with the i-th diagonal element bi/b

′
i.
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Table 1: Relation between direct density ratio estimation methods.

Methods
Density

estimation
Model
selection

Optimization
Out-of-sample
prediction

KMM Not necessary Not available Convex QP Not possible
LogReg Not necessary Available Convex non-linear Possible
KLIEP Not necessary Available Convex non-linear Possible
LSIF Not necessary Available Convex QP Possible
uLSIF Not necessary Available Analytic Possible

4.1 Discussions

For KMM, there is no objective model selection method. Therefore, model parameters
such as the Gaussian width need to be determined by hand, which is highly subjective in
outlier detection. On the other hand, LogReg and KLIEP give an estimate of the entire
importance function. Therefore, the importance values at unseen points can be estimated
and CV becomes available for model selection. However, LogReg and KLIEP are com-
putationally rather expensive since non-linear optimization problems have to be solved.
LSIF has qualitatively similar properties to LogReg and KLIEP, but it is advantageous
over LogReg and KLIEP in that it is equipped with a regularization path tracking algo-
rithm. Thanks to this, model selection of LSIF is computationally much more efficient
than LogReg and KLIEP. However, the regularization path tracking algorithm tends to
be numerically unstable.

Table 1 summarizes the characteristics of the direct density ratio estimation methods.
uLSIF inherits the preferable properties of LogReg, KLIEP, and LSIF, i.e., it can avoid
density estimation, model selection is possible, and non-linear optimization is involved.
Furthermore, the solution of uLSIF can be computed analytically through matrix inver-
sion and therefore uLSIF is computationally very efficient. Thanks to the availability of
the closed-form solution, the LOOCV score can also be analytically computed without
repeating the hold-out loop, which highly contributes to reducing the computation time
in the model selection phase.

Based on the above discussion, we decided to use uLSIF in our outlier detection
procedure.

4.2 Heuristic of Basis Function Choice

In uLSIF, a good model may be chosen by LOOCV, given that a set of promising model
candidates is prepared. Here we propose to use a Gaussian kernel model centered at the
training points {xtr

j }ntr
j=1 as model candidates, i.e.,

ŵ(x) =
ntr∑
ℓ=1

αℓKσ(x,x
tr
ℓ ),

where Kσ(x,x
′) is the Gaussian kernel (1) with kernel width σ.
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The reason why the training points {xtr
j }ntr

j=1 are chosen as the Gaussian centers, not
the test points {xte

i }nte
i=1, is as follows. By definition, the importance w(x) tends to take

large values if the training density ptr(x) is large and the test density pte(x) is small;
conversely, w(x) tends to be small (i.e., close to zero) if ptr(x) is small and pte(x) is
large. When a function is approximated by a Gaussian kernel model, many kernels may
be needed in the region where the output of the target function is large; on the other
hand, only a small number of kernels would be enough in the region where the output of
the target function is close to zero. Following this heuristic, we decided to allocate many
kernels at high training density regions, which can be achieved by setting the Gaussian
centers at the training points {xtr

j }ntr
j=1.

Alternatively, we may locate (ntr+nte) Gaussian kernels at both {xtr
j }ntr

j=1 and {xte
i }nte

i=1.
However, in our preliminary experiments, this did not further improve the performance,
but just slightly increased the computational cost. Since ntr is typically very large, just
using all the training points {xtr

j }ntr
j=1 as Gaussian centers is already computationally rather

demanding. To ease this problem, we practically propose to use a subset of {xtr
j }ntr

j=1 as
Gaussian centers for computational efficiency, i.e., for some b such that 1 ≤ b ≤ ntr,

ŵ(x) =
b∑

ℓ=1

αℓKσ(x, cℓ),

where cℓ is a template point randomly chosen from {xtr
j }ntr

j=1.
We use the above basis functions in LogReg, KLIEP, and uLSIF in the experiments.

4.3 Illustrative Examples

Here, we illustrate how uLSIF behaves in inlier-based outlier detection.

4.3.1 Toy Dataset

Let the dimension of the data domain be d = 1, and let the training density be

(a) ptr(x) = N (x; 0, 1),

(b) ptr(x) = 0.5N (x;−5, 1) + 0.5N (x; 5, 1),

where N (x;µ, σ2) denotes the Gaussian density with mean µ and variance σ2. We draw
ntr = 300 training samples and 99 test samples from ptr(x), and we add an outlier sample
at x = 5 for the case (a) and at x = 0 for the case (b) to the test set; thus the total
number of test samples is nte = 100. The number of basis functions in uLSIF is fixed to
b = 100, and the Gaussian width σ and the regularization parameter λ are chosen from a
wide range of values based on LOOCV.

The data densities as well as the importance values (i.e., the inlier scores) obtained by
uLSIF are depicted in Figure 5. The graphs show that the outlier sample has the smallest
inlier score among all samples and therefore the outlier can be successfully detected. Since
the solution of uLSIF tends to be sparse, it may be natural to have a Gaussian-like profile
as the inlier score (see Figure 5 again).
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Figure 5: Illustration of uLSIF-based outlier detection.
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Figure 6: Outliers in the USPS test set.
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Figure 7: ‘Outliers’ in the USPS training set.
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4.3.2 USPS Dataset

The USPS dataset contains images of hand-written digits provided by U.S. Postal Service.
Each digit image consists of 256 (= 16× 16) pixels, each of which takes a value between
−1 to +1 representing its color in gray-scale. The class labels attached to the images are
integers between 0 and 9 denoting the digits the images represent. Here, we try to find
irregular samples in the USPS dataset by uLSIF.

To the 256-dimensional image vectors, we append 10 additional dimensions indicating
the true class to identify mislabeled images. In uLSIF, we set b = 100 and σ and λ are
chosen from a wide range of values based on LOOCV. Figure 6 shows the top 10 outlier
samples in the USPS test set (of size 2007) found by uLSIF (from left-top to right-bottom,
the outlier rank goes from 1 to 10); the original labels are attached next to the images.
This result clearly shows that the proposed method successfully detects outlier samples
which are very hard to recognize even by humans.

Let us also consider an inverse scenario: we switch the training and test sets and
examine the USPS training set (of size 7291). Figure 7 depicts the top 10 outliers found
by uLSIF, showing that they are relatively ‘good’ samples. This implies that the USPS
training set consists only of high-quality samples.

5 Relation to Existing Outlier Detection Methods

In this section, we discuss the relation between the proposed density-ratio based outlier
detection approach and existing outlier detection methods.

The outlier detection problem we are addressing in this paper is to find outliers in the
test set {xte

i }nte
i=1 based on the training set {xtr

j }ntr
j=1 consisting only of inliers. On the other

hand, the outlier detection problem that the existing methods reviewed here are solving
is to find outliers in the test set without the training set. Thus the setting is slightly
different. However, the existing methods can also be employed in our setting by simply
using the union of training and test samples as a test set:

{xk}nk=1 = {xtr
j }ntr

j=1 ∪ {xte
i }nte

i=1.

5.1 Kernel Density Estimator (KDE)

KDE is a non-parametric technique to estimate a density p(x) from samples {xk}nk=1.
KDE with the Gaussian kernel is expressed as

p̂(x) =
1

n(2πσ2)d/2

n∑
k=1

Kσ(x,xk),

where Kσ(x,x
′) is the Gaussian kernel (1).

The performance of KDE depends on the choice of the kernel width σ, but its value
can be objectively determined based on LCV (Härdle et al., 2004): a subset of {xk}nk=1
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is used for density estimation and the rest is used for estimating the likelihood of the
hold-out samples. Note that this LCV procedure corresponds to choosing σ such that
the Kullback-Leibler divergence from p(x) to p̂(x) is minimized. The estimated density
values could be directly used as an inlier score. A variation of the KDE approach has
been studied in Latecki, Lazarevic and Pokrajac (2007), where local outliers are detected
from multi-modal datasets.

However, kernel density estimation is known to suffer from the curse of dimensional-
ity (Vapnik, 1998), and therefore the KDE-based outlier detection method may not be
reliable in practice.

The density ratio can also be estimated by KDE, i.e., first estimating the training and
test densities separately and then taking the ratio of the estimated densities. However, the
estimation error tends to be accumulated in this two-step procedure and our preliminary
experiments showed that this is not useful.

5.2 One-class Support Vector Machine (OSVM)

SVM is one of the most successful classification algorithms in machine learning. The core
idea of SVM is to separate samples in different classes by the maximum margin hyperplane
in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection (Schölkopf et al., 2001). The basic
idea of OSVM is to separate data samples {xk}nk=1 into outliers and inliers by a hyperplane
in a Gaussian reproducing kernel Hilbert space. More specifically, the solution of OSVM
is given as the solution of the following quadratic programming problem:

min
{wk}nk=1

1

2

n∑
k,k′=1

wkwk′Kσ(xk,xk′)

s.t.
n∑

k=1

wk = 1 and 0 ≤ w1, . . . , wn ≤
1

νn
,

where ν (0 ≤ ν ≤ 1) is the maximum fraction of outliers.
OSVM inherits the concept of SVM, so it is expected to work well. However, the

OSVM solution is dependent on the outlier ratio ν and the Gaussian kernel width σ;
choosing these tuning parameter values could be highly subjective in unsupervised outlier
detection. This is a critical limitation in practice. Furthermore, inlier scores cannot be
directly obtained by OSVM; the distance from the separating hyperplane may be used as
an inlier score (we do so in the experiments in Section 6), but its statistical meaning is
rather unclear.

A similar algorithm named Support Vector Data Description (SVDD) (Tax and Duin,
2004) is known to be equivalent to OSVM if the Gaussian kernel is used.
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5.3 Local Outlier Factor (LOF)

LOF is an outlier score suitable for detecting local outliers apart from dense re-
gions (Breunig, Kriegel, Ng and Sander, 2000). The LOF value of a sample x is defined
using the ratio of the average distance from the nearest neighbors as

LOFk(x) =
1

k

k∑
i=1

lrdk(nearesti(x))

lrdk(x)
,

where nearesti(x) represents the i-th nearest neighbor of x and lrdk(x) denotes the inverse
of the average distance from the k nearest neighbors of x. If x lies around a high density
region and its nearest neighbor samples are close to each other in the high density region,
lrdk(x) tends to become much smaller than lrdk(nearesti(x)) for every i. In such cases,
LOFk(x) has a large value and x is regarded as a local outlier.

Although the LOF values seem to be a suitable outlier measure, the performance
strongly depends on the choice of the parameter k. To the best of our knowledge, there is
no systematic method to select an appropriate value for k. In addition, the computational
cost of the LOF scores is expensive since it involves a number of nearest neighbor search
procedures.

5.4 Learning from Positive and Unlabeled Data

A formulation called learning from positive and unlabeled data has been introduced in
Liu, Dai, Li, Lee and Yu (2003): given positive and unlabeled datasets, the goal is to
detect positive samples contained in the unlabeled dataset. The assumption behind this
formulation is that most of the unlabeled samples are negative (outlier) samples, which
is different from the current outlier detection setup. In Li, Liu and Ng (2007), a modified
formulation has been addressed in the context of text data analysis—the unlabeled dataset
contains only a small number of negative documents. The key idea is to construct a single
representative document of the negative (outlier) class based on the difference between
the distributions of positive and unlabeled documents. Although the problem setup is
similar to ours, the method is specialized in text data, i.e., the bag-of-words expression.

Since the above methods of learning from positive and unlabeled data do not fit general
inlier-based outlier detection scenarios, we will not include them in the experiments in
Section 6.

5.5 Discussions

In summary, the proposed density-ratio based approach with direct density-ratio estima-
tion would be more advantageous than KDE since it allows us to avoid density estimation
which is known to be a hard task. Compared with OSVM and LOF, the density-ratio
based approach with uLSIF (and also LogReg, KLIEP, and LSIF) would be more useful
since it is equipped with a model selection procedure. Furthermore, uLSIF is computa-
tionally more efficient than OSVM and LOF thanks to the analytic-form solution.
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6 Experiments

In this section, we experimentally compare the performance of the proposed and existing
outlier detection algorithms. For all experiments, we use the statistical language environ-
ment R (R Development Core Team, 2008). We implemented uLSIF, KLIEP, LogReg,
KDE, and KMM by ourselves. uLSIF and KLIEP are implemented following Kanamori,
Hido and Sugiyama (2009b) and Sugiyama, Suzuki, Nakajima, Kashima, von Bünau and
Kawanabe (2008), respectively. A package of the L-BFGS-B method called optim is used
in our LogReg implementation, and a quadratic program solver called ipop contained in
the kernlab package (Karatzoglou, Smola, Hornik and Zeileis, 2004) is used in our KMM
implementation. We use the ksvm function contained in the kernlab package for OSVM
and the lofactor function included in the dprep package (Fernandez, 2005) for LOF.

6.1 Benchmark Datasets

We use 12 datasets available from Rätsch’s Benchmark Repository (Rätsch, Onoda and
Müller, 2001). Note that they are originally binary classification datasets—here we regard
the positive samples as inliers and the negative samples as outliers. All the negative sam-
ples are removed from the training set, i.e., the training set only contains inlier samples.
In contrast, a fraction ρ of randomly chosen negative samples are retained in the test set,
i.e., the test set includes all inlier samples and some outliers.

When evaluating the performance of outlier detection algorithms, it is important to
take into account both the detection rate (the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (the amount of true inliers that an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detec-
tion rate and detection accuracy, we decided to adopt the Area Under the ROC Curve
(AUC) (Bradley, 1997) as our error metric here.

We compare the AUC values of the density-ratio based methods (KMM, LogReg,
KLIEP, and uLSIF) and other methods (KDE, OSVM, and LOF). All the tuning pa-
rameters included in LogReg, KLIEP, uLSIF, and KDE are chosen based on CV from a
wide range of values. CV is not available to KMM, OSVM, and LOF; the Gaussian kernel
width in KMM and OSVM is set as the median distance between samples, which has been
shown to be a useful heuristic1 (Schölkopf and Smola, 2002). For KMM, we fix the other
tuning parameters at B = 1000 and ϵ = (

√
nte − 1)/

√
nte following Huang et al. (2007).

For OSVM, we fix the tuning parameter at ν = 0.1. The number of basis functions in
uLSIF is fixed to b = 100. Note that b can also be optimized by CV, but our preliminary
experimental results showed that the performance is not so sensitive to the choice of b
and b = 100 seems to be a reasonable choice. For LOF, we test 3 different values for the
number k of nearest neighbors.

The mean AUC values over 20 trials as well as the computation time are summarized
in Table 2, where the value is normalized so that the computation time of uLSIF is
one. Since the type of outliers may be diverse depending on the datasets, no single

1We experimentally confirmed that this heuristic works reasonably well in the current experiments.
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Table 2: Mean AUC values over 20 trials for the benchmark datasets.

Dataset uLSIF KLIEP LogReg KMM OSVM LOF KDE
Name ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

banana
0.01 0.851 0.815 0.447 0.578 0.360 0.838 0.915 0.919 0.934
0.02 0.858 0.824 0.428 0.644 0.412 0.813 0.918 0.920 0.927
0.05 0.869 0.851 0.435 0.761 0.467 0.786 0.907 0.909 0.923

b-cancer
0.01 0.463 0.480 0.627 0.576 0.508 0.546 0.488 0.463 0.400
0.02 0.463 0.480 0.627 0.576 0.506 0.521 0.445 0.428 0.400
0.05 0.463 0.480 0.627 0.576 0.498 0.549 0.480 0.452 0.400

diabetes
0.01 0.558 0.615 0.599 0.574 0.563 0.513 0.403 0.390 0.425
0.02 0.558 0.615 0.599 0.574 0.563 0.526 0.453 0.434 0.425
0.05 0.532 0.590 0.636 0.547 0.545 0.536 0.461 0.447 0.435

f-solar
0.01 0.416 0.485 0.438 0.494 0.522 0.480 0.441 0.385 0.378
0.02 0.426 0.456 0.432 0.480 0.550 0.442 0.406 0.343 0.374
0.05 0.442 0.479 0.432 0.532 0.576 0.455 0.417 0.370 0.346

german
0.01 0.574 0.572 0.556 0.529 0.535 0.526 0.559 0.552 0.561
0.02 0.574 0.572 0.556 0.529 0.535 0.553 0.549 0.544 0.561
0.05 0.564 0.555 0.540 0.532 0.530 0.548 0.571 0.555 0.547

heart
0.01 0.659 0.647 0.833 0.623 0.681 0.407 0.659 0.739 0.638
0.02 0.659 0.647 0.833 0.623 0.678 0.428 0.668 0.746 0.638
0.05 0.659 0.647 0.833 0.623 0.681 0.440 0.666 0.749 0.638

satimage
0.01 0.812 0.828 0.600 0.813 0.540 0.909 0.930 0.896 0.916
0.02 0.829 0.847 0.632 0.861 0.548 0.785 0.919 0.880 0.898
0.05 0.841 0.858 0.715 0.893 0.536 0.712 0.895 0.868 0.892

splice
0.01 0.713 0.748 0.368 0.541 0.737 0.765 0.778 0.768 0.845
0.02 0.754 0.765 0.343 0.588 0.744 0.761 0.793 0.783 0.848
0.05 0.734 0.764 0.377 0.643 0.723 0.764 0.785 0.777 0.849

thyroid
0.01 0.534 0.720 0.745 0.681 0.504 0.259 0.111 0.071 0.256
0.02 0.534 0.720 0.745 0.681 0.505 0.259 0.111 0.071 0.256
0.05 0.534 0.720 0.745 0.681 0.485 0.259 0.111 0.071 0.256

titanic
0.01 0.525 0.534 0.602 0.502 0.456 0.520 0.525 0.525 0.461
0.02 0.496 0.498 0.659 0.513 0.526 0.492 0.503 0.503 0.472
0.05 0.526 0.521 0.644 0.538 0.505 0.499 0.512 0.512 0.433

twonorm
0.01 0.905 0.902 0.161 0.439 0.846 0.812 0.889 0.897 0.875
0.02 0.896 0.889 0.197 0.572 0.821 0.803 0.892 0.901 0.858
0.05 0.905 0.903 0.396 0.754 0.781 0.765 0.858 0.874 0.807

waveform
0.01 0.890 0.881 0.243 0.477 0.861 0.724 0.887 0.889 0.861
0.02 0.901 0.890 0.181 0.602 0.817 0.690 0.887 0.890 0.861
0.05 0.885 0.873 0.236 0.757 0.798 0.705 0.847 0.874 0.831

Average 0.661 0.685 0.530 0.608 0.596 0.594 0.629 0.622 0.623

Comp. time 1.00 11.7 5.35 751 12.4 85.5 8.70
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best may consistently outperform the others for all the datasets. To evaluate the overall
performance, we included the averaged AUC values over all datasets at the bottom of
Table 2.

The results show that uLSIF works fairly well on the whole. KLIEP tends to perform
similarly to uLSIF since the same linear model is used for importance estimation. How-
ever, uLSIF is computationally much more efficient than KLIEP. LogReg overall works
reasonably well, but it performs poorly for some datasets such as splice, twonorm, and
waveform, and the average AUC performance is not as good as uLSIF or KLIEP.

KMM and OSVM are not comparable to uLSIF in AUC and they are computationally
inefficient. Note that we also tested KMM and OSVM with several different Gaussian
widths and experimentally found that the heuristic of using the median sample distance
as the Gaussian kernel width works reasonably well in this experiment. Thus the AUC
values of KMM and OSVM are expected to be close to their optimal values. LOF with
large k is shown to work well, although it is not clear whether the heuristic of simply
using large k is always appropriate. In fact, the average AUC values of LOF is slightly
higher for k = 30 than k = 50 and there is no systematic way to choose the optimal value
for k. LOF is computationally demanding since nearest neighbor search is expensive.
KDE sometimes works reasonably well, but the performance fluctuates depending on the
dataset. Therefore, its averaged AUC value is not as good as uLSIF and KLIEP.

Overall, the proposed uLSIF-based method could be regarded a reliable and compu-
tationally efficient alternative to existing outlier detection methods.

6.2 SMART Datasets

Next, let us consider a real-world failure prediction problem in hard-disk drives equipped
with the Self-Monitoring and Reporting Technology (SMART). The SMART system mon-
itors individual drives and stores some attributes (e.g., the number of read errors) as time-
series data. We use the SMART dataset provided by a manufacturer (Murray, Hughes
and Kreutz-Delgado, 2005). The dataset consists of 369 drives, where 178 drives are la-
beled as ‘good’ and 191 drives are labeled as ‘failed’. Each drive stores up to the last 300
records which are logged almost every 2 hours. Although each record originally includes
59 attributes, we use only 25 variables chosen based on the feature selection test follow-
ing Murray et al. (2005). The sequence of records are converted into data samples in a
sliding-window manner with window size ℓ.

In practice, undetected defects may exist in the training set. In order to simulate such
realistic situations, we add a small fraction τ of ‘before-fail ’ samples to the training set
in addition to the records of the 178 good drives; the before-fail samples are taken from
the 191 failed drives more than 300 hours prior to failure. The test set is made of the
records of the good drives and the records of the 191 failed drives less than 100 hours
prior to failure; the samples corresponding to the failed drives are regarded as outliers in
this experiment.

First, we perform experiments for the window size ℓ = 5, 10 and evaluate the depen-
dence of the feature dimension on the outlier detection performance. The fraction τ of
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Table 3: SMART dataset: mean AUC values when changing the window size ℓ and the
outlier ratio ρ

Dataset uLSIF KLIEP LogReg KMM OSVM LOF KDE
ℓ ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

5
0.01 0.894 0.842 0.851 0.822 0.919 0.854 0.937 0.933 0.918
0.02 0.870 0.810 0.862 0.813 0.896 0.850 0.934 0.928 0.892
0.05 0.885 0.858 0.888 0.849 0.864 0.789 0.911 0.923 0.883

10
0.01 0.868 0.805 0.827 0.889 0.812 0.880 0.925 0.920 0.557
0.02 0.879 0.845 0.852 0.894 0.785 0.860 0.919 0.917 0.546
0.05 0.889 0.857 0.856 0.898 0.783 0.849 0.915 0.916 0.619

Average 0.881 0.836 0.856 0.861 0.843 0.847 0.924 0.923 0.736

Comp. time 1.00 1.07 3.11 4.36 26.98 65.31 2.19

Table 4: SMART dataset: mean AUC values when changing heterogeneousness τ (ρ =
0.05 and ℓ = 10)

Dataset uLSIF KLIEP LogReg KMM OSVM LOF KDE
τ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

0.05 0.889 0.857 0.856 0.898 0.783 0.849 0.915 0.916 0.619
0.10 0.885 0.856 0.846 0.890 0.785 0.846 0.841 0.914 0.618
0.15 0.868 0.814 0.785 0.886 0.784 0.831 0.835 0.899 0.536
0.20 0.870 0.815 0.778 0.872 0.749 0.847 0.866 0.838 0.540

Average 0.878 0.836 0.816 0.887 0.775 0.843 0.864 0.892 0.578

Comp. time 1.00 1.19 3.78 5.68 30.83 74.30 2.76
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before-fail samples in the training set is fixed to 0.05. Other settings including the fraction
ρ of outliers and the number b of basis functions are the same as the previous experiments.
The results are summarized in Table 3. It shows that the density ratio based methods
work well overall; among them, uLSIF has the highest accuracy with the lowest compu-
tational cost. Their performance tends to be increased as the outlier fraction ρ increases.
On the other hand, the performance of OSVM, LOF, and KDE tends to be degraded as
ρ increases. Furthermore, they (especially OSVM and KDE) perform poorly when the
feature dimension ℓ increases. This indicates that the density-ratio based methods are
more robust to the high dimensionality of the dataset. LOF also works very well if the
number of nearest neighbors k is chosen appropriately. However, a good choice of k may
be problem-dependent and the computation time of LOF is very slow due to extensive
nearest neighbor search.

Next, we change the fraction of before-fail samples in the training set as τ =
0.05, 0.10, 0.15, 0.20 and evaluate the effect of heterogeneousness of the training set on
the outlier detection performance. The fraction ρ of outliers in the test set is fixed to
0.05 and the window size ℓ is fixed to 10. Table 4 summarizes the results and shows that
the density-ratio based methods still work well. Compared to them, OSVM and KDE
perform poorly. Though LOF with k = 50 shows the best average value, its computa-
tion is slow and the performance is unstable when the fraction τ is changed. Indeed, the
performance of LOF with k = 30 and k = 50 tends to be degraded if the fraction τ of
before-fail samples in the training set is increased. This implies that noisy samples in the
training set degrade the performance of LOF. On the other hand, uLSIF and KMM are
stable even when τ increases. The performance of KMM is slightly better than that of
uLSIF, though uLSIF is much faster.

6.3 In-house Financial Datasets

Finally, we use an in-house real-world dataset (named ‘RealF ’) which we acquired from
loan business. A sample in the RealF dataset corresponds to transaction data of a cus-
tomer for 7 months, which consists of 11-dimensional features. Each customer is labeled
according to his/her risk, ‘low’ or ‘high’, determined after 6 months of transactions.

Similarly to the previous experiments, we first separate the samples into the positive
(low risk) and negative (high risk) ones. Then 200 training samples are randomly taken
from the positive dataset, and the test set consisting of randomly chosen 1000 positive
samples and a fraction ρ of negative samples are formed. Since the true outlier ratio (the
ratio of high-risk customers in the population) is around 5% in real-world loan business,
we test ρ = 0.03, 0.05, 0.07 in the experiments. Our task is to detect high-risk customers
in the test set given the training set including only low-risk customers. This is a highly
important problem in practice since loan companies can take precautions against risks by,
e.g., limiting the maximum amount of debt of suspicious customers based on their outlier
scores.

We perform experiments for 7-month data and 4-month data—the experiment using
4-month data corresponds to early detection of high-risk customers, which is more im-
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Table 5: RealF dataset: mean AUC values when changing the data period and the outlier
ratio ρ

Dataset uLSIF KLIEP LogReg KMM OSVM LOF KDE
#Month ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

7
0.03 0.671 0.643 0.390 0.565 0.483 0.666 0.659 0.667 0.636
0.05 0.672 0.681 0.397 0.492 0.503 0.643 0.663 0.673 0.667
0.07 0.677 0.664 0.391 0.514 0.505 0.639 0.669 0.685 0.669

4
0.03 0.628 0.625 0.394 0.457 0.495 0.640 0.611 0.622 0.630
0.05 0.634 0.646 0.394 0.444 0.496 0.608 0.616 0.627 0.635
0.07 0.640 0.648 0.382 0.473 0.509 0.608 0.622 0.633 0.648

Average 0.654 0.651 0.391 0.491 0.498 0.634 0.640 0.651 0.647

Comp. time 1.00 1.62 2.68 419.66 32.66 36.73 0.99

portant and challenging in practice. The mean AUC values and the computation time
are summarized in Table 5. The results show that uLSIF performs excellently both in
accuracy and computation time. KLIEP has comparable accuracy to uLSIF with a slight
increase in computation time. On the other hand, LogReg, KMM, and OSVM perform
poorly for the RealF dataset for all choices of #Month and ρ, indicating that these algo-
rithms tend to fail in recognizing the distribution of the high-risk customers in the dataset.
LOF works well, but its performance again depends on the choice of the parameter k and
it is computationally expensive. KDE works stable and quite well for this dataset with
slightly lower accuracy than uLSIF. As the outlier fraction ρ increases, the AUC values
of uLSIF, KLIEP, and KDE tend to be increased. Their performance tends to be better
for the 7-month data than for the 4-month data since the detection model can benefit
from the additional information included in the 7-month data. Thus the accuracy will be
further improved if customers’ record data longer than 7 months is used.

These results indicate that our algorithm using the density ratio is accurate and com-
putationally efficient in real-world failure prediction tasks—in particular, the use of uLSIF
seems promising both in accuracy and computational efficiency.

7 Concluding Remarks

We have cast the inlier-based outlier detection problem as a problem of estimating the
ratio of probability densities (i.e., the importance). The basic assumption behind our
framework is that a data sample lying in the region where the test input density signif-
icantly exceeds the training input density is plausible to be an outlier. Our framework
requires estimating the density ratio, but accurate estimation of probability density func-
tions is difficult especially when the data has neither low dimensionality nor a simple
distribution (e.g., the Gaussian distribution). To avoid density estimation, we proposed
a practical outlier detection algorithm based on direct density ratio estimation methods
including unconstrained least-squares importance fitting (uLSIF).
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In uLSIF, the density ratio is modeled by a linear model and the squared loss is used
for density-ratio function fitting (Kanamori, Hido and Sugiyama, 2009a; Kanamori, Hido
and Sugiyama, 2009b). The solution of the optimization problem of uLSIF can be com-
puted analytically through matrix inversion and therefore uLSIF is computationally very
efficient. uLSIF is equipped with a variant of cross-validation (CV), so the values of tuning
parameters such as the regularization parameter can be objectively determined without
subjective trial and error. Therefore, we can obtain a purely objective solution to the out-
lier detection problem. This is highly important in unsupervised settings where no prior
knowledge is usually available. Furthermore, the uLSIF-based outlier detection method
allows us to compute the outlier score just by solving a system of linear equations—the
leave-one-out cross-validation (LOOCV) error can also be computed analytically. Thus,
the uLSIF-based method is computationally very efficient and therefore is scalable to
massive datasets.

Through extensive simulations with benchmark and real-world datasets, the useful-
ness of the proposed approach was demonstrated. The experimental results for the UCI
datasets showed that uLSIF and KLIEP work very well in terms of accuracy. Although
other methods also performed well for some datasets, they also exhibited poor perfor-
mance in other cases. On the other hand, the performance of uLSIF and KLIEP was
shown to be relatively stable over various datasets. In addition, from the viewpoint of
computation time, uLSIF was shown to be much faster than KLIEP and other methods.
In the experiment on the SMART disk-failure datasets, uLSIF was shown to be compet-
itive to the best method LOF in accuracy, but is computationally much more efficient
than LOF. For the in-house financial datasets, uLSIF was shown to be the most accurate
and the fastest among the methods we have tested. Based on the experimental results,
we conclude that the proposed uLSIF-based method should be regarded as a reliable and
computationally efficient alternative to existing outlier detection methods.

Independently of our work, a similar method of outlier detection based on the density
ratio has been proposed recently (Smola, Song and Teo, 2009) and shown to work well.
Also, an earlier report showed that our method is useful in visual inspection of real-world
precision instruments (Takimoto, Matsugu and Sugiyama, 2009). Thus the density-ratio
method would be a promising approach to outlier detection.

MATLAB R⃝ implementations of the uLSIF- and KLIEP-based outlier detection meth-
ods (which are referred to as least-squares outlier detection andmaximum likelihood outlier
detection) are available from the following web pages:

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSOD/

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/MLOD/

As shown in this paper, the density ratio plays a crucial role in outlier detection. A sim-
ilar technique may be used for online detection of change points in time series (Kawahara
and Sugiyama, 2009). These methods may be regarded as a new approach to the tradi-
tional likelihood ratio test. Thus we expect that two sample problems of testing whether
two sets of samples are drawn from the same distributions or not could also be successfully
approached based on density ratio estimation methods.
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Now we can further generalize this line of research—looking at various data pro-
cessing tasks from the viewpoint of density ratios (Sugiyama, Kanamori, Suzuki, Hido,
Sese, Takeuchi and Wang, 2009). Importance sampling would be a natural applica-
tion of the density ratio (Fishman, 1996), where samples taken from one distribu-
tion are used for computing the expectation over another distribution. Following this
line, non-stationarity adaptation based on density ratios has been extensively studied
these days (Shimodaira, 2000; Zadrozny, 2004; Sugiyama and Müller, 2005; Sugiyama,
Krauledat and Müller, 2007; Quiñonero-Candela, Sugiyama, Schwaighofer and Lawrence,
2009; Sugiyama, von Bünau, Kawanabe and Müller, 2010), and it has been success-
fully applied to various real-world problems such as brain-computer interface (Sugiyama
et al., 2007; Li, Koike and Sugiyama, 2009), robot control (Hachiya, Akiyama, Sugiyama
and Peters, 2009; Hachiya, Peters and Sugiyama, 2009), spam filtering (Bickel and Schef-
fer, 2007), speaker identification (Yamada, Sugiyama and Matsui, 2010), and natural
language processing (Tsuboi, Kashima, Hido, Bickel and Sugiyama, 2009). Active learn-
ing is also a crucial application of density ratios (Wiens, 2000; Kanamori and Shi-
modaira, 2003; Sugiyama, 2006; Kanamori, 2007), with successful real-world applica-
tions in semi-conductor wafer alignment (Sugiyama and Nakajima, 2009) and robot con-
trol (Akiyama, Hachiya and Sugiyama, 2010).

Furthermore, mutual information, which plays an important role in information the-
ory (Cover and Thomas, 1991), can be approximated by using density ratio estima-
tion methods (Suzuki, Sugiyama, Sese and Kanamori, 2008; Suzuki, Sugiyama and
Tanaka, 2009). Since mutual information allows one to identify statistical indepen-
dence among random variables, it can be used for various purposes such as independent
component analysis (Suzuki and Sugiyama, 2009a), feature selection (Suzuki, Sugiyama,
Kanamori and Sese, 2009), and dimensionality reduction (Suzuki and Sugiyama, 2009b).
Density ratio estimation may also be used for conditional density estimation since a con-
ditional density can be expressed by the ratio of the joint density and the marginal density
(Sugiyama, Takeuchi, Suzuki, Kanamori, Hachiya and Okanohara, 2010).

Thus our important future work is to further improve the accuracy of density ratio esti-
mation, which will highly contribute to enhancing the performance of various algorithms
listed above. For example, a density ratio estimation method combined with dimen-
sionality reduction has been proposed in Sugiyama, Kawanabe and Chui (2010), where
a supervised dimensionality reduction technique called local Fisher discriminant analy-
sis (Sugiyama, 2007; Sugiyama, Idé, Nakajima and Sese, 2010) is used for identifying a
subspace in which two distributions are significantly different. Density ratio estimation
beyond linear/kernel models has also been studied, e.g., for log-linear models (Tsuboi
et al., 2009) and Gaussian mixture models (Yamada and Sugiyama, 2009). Furthermore,
theoretically investigating advantages of direct density ratio estimation beyond Vapnik’s
principle of avoiding density estimation (Vapnik, 1998) is necessary. Thus research on
density ratio estimation would be an emerging and challenging paradigm in data mining
and machine learning.
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