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Covariate shift is a situation in supervised learning where training and test
inputs follow different distributions even though the functional relation remains
unchanged. A common approach to compensating for the bias caused by covari-
ate shift is to reweight the loss function according to the importance, which is
the ratio of test and training densities. We propose a novel method that allows
us to directly estimate the importance from samples without going through
the hard task of density estimation. An advantage of the proposed method is
that the computation time is nearly independent of the number of test input
samples, which is highly beneficial in recent applications with large numbers
of unlabeled samples. We demonstrate through experiments that the proposed
method is computationally more efficient than existing approaches with com-
parable accuracy. We also describe a promising result for large-scale covariate
shift adaptation in a natural language processing task.

1. Introduction

An assumption that is commonly imposed—either explicitly or implicitly—in
virtually all supervised learning methods is that the training and test samples
follow the same probability distribution. However, this fundamental assumption
is often violated in practice, causing standard machine learning methods not to
work as expected. In this paper, we address supervised learning problems in the
absence of this fundamental assumption.

If the training and test distributions share nothing in common, we may not
be able to learn anything about the test distribution from the training sam-
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ples. For a meaningful discussion, the training and test distributions should be
related to each other in some sense. A situation where the input distribution
p(x) is different in the training and test phases but the conditional distribu-
tion of output values, p(y|x), remains unchanged is called covariate shift21). In
many real-world applications such as robot control15),20),27), bioinformatics1),6),
spam filtering3), natural language processing17), brain-computer interfacing24),31),
or econometrics14), covariate shift is likely. Covariate shift is also naturally in-
duced in selective sampling or active learning scenarios8),10),18),23),30). For this
reason, learning under covariate shift is receiving a lot of attention these days in
the machine learning community (such as in the NIPS2006 workshop7) and the
ECML2006 workshop2)).

Under covariate shift, standard learning methods such as maximum likelihood
estimation are no longer consistent, i.e., they do not produce the optimal solution
even when the number of training samples tends to be infinity. Thus, there exists
an estimation bias induced by covariate shift. It has been shown that the bias
can be asymptotically canceled by weighting the log likelihood terms according
to the importance11),21),32):

w(x) =
pte(x)
ptr(x)

,

where pte(x) and ptr(x) are the test and training input densities. Since the
importance is usually unknown in reality, the central issue of practical covariate
shift adaptation is how to accurately estimate the importance⋆1.

A naive approach to importance estimation is to first estimate the training

⋆1 Covariate shift matters in parameter learning only when the model used for function learn-
ing is misspecified (i.e., the model is so simple that the true learning target function cannot
be expressed)21). When the model is correctly (or overly) specified, the ordinary maximum
likelihood estimation is still consistent. On this basis, there is a criticism that impor-
tance weighting is not needed, but just the use of a sufficiently complex model can settle
the problem. However, overly complex models result in large estimation variances, and
so in practice we need to choose a complex enough but not overly complex model. To
choose such an appropriate model, we usually use a model selection technique such as
cross-validation (CV). However, the ordinary CV score is biased due to covariate shift and
we still need to importance-weight the CV score (or any other model selection criteria)
for unbiasedness21),24),25),32). For this reason, estimating the importance is indispensable
when covariate shift occurs.
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2 Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation

and test densities separately from the training and test input samples, and then
estimate the importance by taking the ratio of the estimated densities. However,
density estimation is known to be a hard problem particularly in high dimensional
cases12). Therefore, this naive approach is usually ineffective—directly estimating
the importance without estimating the densities is more promising. Therefore,
several methods that allow us to directly obtain importance estimates without
going through density estimation have been proposed recently, such as kernel
mean matching (KMM)16), the logistic regression based method (LogReg)4), and
the Kullback-Leibler Importance Estimation Procedure (KLIEP)26).

KMM is based on a special property of universal reproducing kernel Hilbert
spaces (Gaussian reproducing kernel Hilbert spaces are typical examples)22), and
KMM allows us to directly obtain the importance estimates at the training in-
put points. Since the KMM optimization problem is formulated as a convex
quadratic programming problem, it always leads to the unique global solution.
KMM has been shown to work well, as long as the kernel parameters such as the
Gaussian width are chosen appropriately. However, to the best of our knowledge,
there is no reliable method to determine the Gaussian width and the regulariza-
tion parameter in the KMM algorithm⋆1. Therefore, the lack of model selection
procedures is a critical limitation of KMM in practical applications.

LogReg builds a probabilistic classifier that separates training input samples
from test input samples, and the importance can be directly estimated by LogReg.
The maximum likelihood estimation of the LogReg can be formulated as a convex
optimization problem, so the unique global optimal solution can be obtained. In
addition, since LogReg only solves a standard supervised classification problem,
the tuning parameters such as the kernel width and the regularization parameter
can be optimized by the standard cross-validation (CV) procedure. This is a very

⋆1 Intuitively, it seems possible to optimize the kernel width and the regularization parameter
simply by using CV for the performance of subsequent learning algorithms. However,
this is highly unreliable since the ordinary CV score is biased under covariate shift. For
unbiased estimation of the prediction performance of subsequent learning algorithms, the
CV procedure itself needs to be importance-weighted24),32). Since the importance weight
has to have been fixed when model selection is carried out using the importance weighted
CV, it cannot be used for model selection of importance estimation algorithms. Note that
once the importance weight has been fixed, the importance-weighted CV can be used for
model selection of subsequent learning algorithms.

useful property in practice.
KLIEP tries to match an importance-based estimation of the test input dis-

tribution to the true test input distribution in terms of the Kullback-Leibler
divergence. KLIEP solves this matching problem in a non-parametric fashion.
The training and test input distributions are not parameterized, but only the
importance is parameterized. The KLIEP optimization problem is convex and
therefore a unique global optimal solution can be obtained. Furthermore, the
global solution tends to be sparse, so it is computationally efficient in the test
phase. Since KLIEP is based on the minimization of the Kullback-Leibler diver-
gence, the model selection of KLIEP, such as the choice of the kernel width and
the regularization parameter, can be carried out naturally through the likelihood
CV procedure12), so no open tuning parameter remains.

As reviewed above, LogReg and KLIEP seem to have advantages over KMM,
since they are equipped with built-in model selection procedures. On the
other hand, from the viewpoint of scalability, all three of the methods have
limitations—in recent applications such as spam filtering3) and information re-
trieval13), the number of test (unlabeled) samples is enormous, especially on the
Web. In these text processing applications, the distribution of training and test
inputs can be changed between domains because of differences in vocabulary and
writing style. The purpose of this paper is to develop a computationally efficient
covariate shift adaptation method that can deal with a large number of unlabeled
data points.

Our new method is primarily based on KLIEP. The key difference is that the
original KLIEP uses a linearly parameterized function for modeling the impor-
tance, while we adopt a log-linear model. By definition, the log-linear model
only takes non-negative values. This allows us to reformulate the KLIEP opti-
mization problem as an unconstrained convex problem. Then we develop a new
scalable estimation procedure whose computation time is nearly independent of
the number of test samples. More precisely, we need to scan a large number of
test samples only once to compute a summary statistic in the beginning (this
precomputation can be carried out in linear time and constant storage space).
The main optimization procedure does not use the test samples themselves, but
only uses the summary statistic. Therefore, the computation time of the main
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optimization procedure is independent of the number of test samples.
The experiments show that the proposed method is computationally much

more efficient than the existing approaches. Therefore the range of application of
covariate shift adaptation can be greatly enlarged towards large-scale problems.
As for estimation accuracy, we experimentally show that the performance of
the proposed method is comparable to the best existing methods for small and
middle sized problems (since the existing methods cannot be applied to large-
scale problems due to the computational costs). Thus the proposed method can
be a useful alternative to the existing covariate shift adaptation methods.

The rest of this paper is organized as follows. Section 2 formulates the su-
pervised learning problem under covariate shift and review covariate shift adap-
tation techniques. Section 3 reviews an existing direct importance estimation
method, KLIEP. Section 4 proposes a new direct importance estimation method
that is scalable to large test data sets. Section 5 illustrates how the proposed
method works in covariate shift adaptation using simple regression and classifica-
tion data sets. Section 6 discusses the relation of the proposed method to existing
approaches. Section 7 reports experimental results comparing the computation
time and estimation accuracy of the proposed and existing methods. Finally,
Section 8 gives conclusions.

2. Problem Formulation

In this section, we formulate the supervised learning problem under covariate
shift and briefly review existing techniques for covariate shift adaptation.

2.1 Supervised learning under covariate shift
Let x ∈ X ⊂ ℜd be an input variable and y ∈ Y be an output variable. Y is

a real space in regression cases or a set of categories in classification cases. In
standard supervised learning frameworks, it is assumed that x is independently
drawn from an input distribution and y is independently drawn from a conditional
distribution, both in training and test phases. In contrast, here we consider a
situation called covariate shift21), i.e., the input distribution differs in the training
and test phases, but the conditional distribution remains unchanged.

Suppose we have independent and identically distributed (i.i.d.) training input
samples Dtr = {x(i)}Ntr

i=1 from a distribution with strictly positive density ptr(x),

and test input samples Dte = {x(i)}Nte
i=1 from a distribution with density pte(x). In

addition to the input samples, suppose we have training output samples {y(i)}Ntr
i=1

drawn from the conditional distribution with conditional density p(y|x = x(i)),
respectively. Typically, the number Ntr of training samples is rather small due to
the high labeling cost, while the number Nte of test input samples is very large
since they are often easily available. We denote training sample pairs of input
and output as:

Ztr = {z(i) | z(i) = (x(i), y(i))}Ntr
i=1.

We use the following linear model:

fθ(x) = ⟨θ, ϕ(x)⟩ , (1)

where θ is the parameter vector, ϕ(x) : X → ℜh is a basis function of
x, and ⟨u, v⟩ denotes the Euclidean inner product between vector u and v:
⟨u, v⟩ =

∑h
l=1 ulvl. Note that this model can contain a bias parameter by just

including a constant basis function in ϕ(x). Throughout the paper, we suppose
that this linear model is not generally specified correctly, i.e., the true input-
output function is not necessarily included in the above linear model. Since we
do not know the true function class in practice, dealing with misspecified models
is quite realistic.

The goal of supervised learning is to learn the parameter θ so that the output
values for the test inputs can be accurately predicted. Thus our error metric
(which is usually called the generalization error) is given by∫∫

Loss(x, y, fθ(x))pte(x)p(y|x)dxdy, (2)

where Loss(x, y, fθ(x)) : X × Y × Y → ℜ is a loss function, such as the squared
loss in a regression case or the zero-one loss in a classification case.

In supervised learning under covariate shift, the following quantity called the
test domain importance plays an important role:

w(x) =
pte(x)
ptr(x)

. (3)
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The importance can be used for adjusting the difference between the training
and test input distributions: for any function A(x),∫

A(x)pte(x)dx =
∫

A(x)w(x)ptr(x)dx. (4)

2.2 Parameter learning under covariate shift
Here we review two typical parameter learning methods under covariate shift:

one is importance weighted least squares (IWLS) for regression and the other is
importance weighted logistic regression (IWLR) for classification.

2.2.1 IWLS
A standard learning method in regression scenarios would be ordinary least

squares (LS):

θ̂LS ≡ argmin
θ

 ∑
(x,y)∈Ztr

(fθ(x) − y)2
 .

LS is known to be consistent under a usual setting. However, it is no longer
consistent for misspecified models under covariate shift. Instead, IWLS is con-
sistent21):

θ̂IWLS ≡ argmin
θ

 ∑
(x,y)∈Ztr

w(x) (fθ(x) − y)2 + λ∥θ∥2

 , (5)

where the importance w(x) is used as weights. Here we also added a penalty
term λ∥θ∥2 for regularization, where λ is a regularization parameter.

For the linear model (1), the above optimization problem is convex and the
unique global solution θ̂IWLS can be computed in a closed-form as

θ̂IWLS = (Φ⊤WΦ + λI)−1Φ⊤Wy,

where I is the identity matrix,

Φi,l = ϕl(x(i)), y = (y(1), y(2), . . . , y(Ntr))⊤, and
W = diag(w(1), w(2), . . . ,w(Ntr)).

2.2.2 IWLR
For simplicity, we focus on the two-class case, i.e., Y = {−1, 1}; we note that

it is straightforward to extend all of the discussions in this paper to multi-class
cases.

Let us model the posterior probability of class y given x using a parametric
model fθ(x) as

pθ(y|x) =
exp(yfθ(x))

1 + exp(yfθ(x))
. (6)

Then a test input sample x is classified by choosing the most probable class:

ŷ = argmax
y

pθ(y|x). (7)

A standard learning method for the above probabilistic classification scenarios
would be ordinary logistic regression (LR):

θ̂LR ≡ argmin
θ

 ∑
(x,y)∈Ztr

− log pθ(y|x)


= argmin

θ

 ∑
(x,y)∈Ztr

(log (1 + exp (yfθ(x)))−yfθ(x))

 .

Similar to the case of LS, LR is consistent under a usual setting, but is no
longer consistent for misspecified models under covariate shift. Instead, IWLR
is consistent:

θ̂IWLR ≡ argmin
θ

 ∑
(x,y)∈Ztr

w(x) (log (1+ exp (yfθ(x)))−yfθ(x)) +λ∥θ∥2

 . (8)

Here we also added a penalty term λ∥θ∥2 for regularization, where λ is a regu-
larization parameter.

This optimization problem is known to be convex and a unique optimal solution
can be computed using standard non-linear optimization techniques such as a
gradient descent method or some variants of the Newton method. The gradient
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of the above objective function is given by∑
(x,y)∈Ztr

w(x) (ypθ(y|x)ϕ(x) − yϕ(x)) + 2λθ.

2.3 Model selection under covariate shift
In the above learning methods, the choice of model parameters such as the

basis functions ϕ and the regularization parameter λ heavily affects the prediction
performance. This problem is called model selection and is one of the key concerns
in machine learning.

A popular model selection method in the machine learning community would
be cross-validation (CV). The performance of CV is guaranteed in the sense that
it gives an unbiased estimate of the generalization error. However, this useful
theoretical property is no longer true under covariate shift32). To cope with
this problem, a variant of CV called importance weighted CV (IWCV) has been
proposed for model selection under covariate shift24). It has been proved that
IWCV gives an unbiased estimate of the generalization error even under covariate
shift.

Here, let us briefly describe the IWCV procedure. We first divide the training
samples {z(i)}Ntr

i=1 into R disjoint subsets {Zr}R
r=1. Then we learn a function

fr
θ(x) from {Zj}j ̸=r by IWLS/IWLR and compute its mean test error for the

remaining samples Zr:

1
|Zr|

∑
(x,y)∈Zr

w(x) (fr
θ(x) − y)2 , (regression)

1
|Zr|

∑
(x,y)∈Zr

w(x)I(ŷ = y), (classification)

where I(·) denotes the indicator function. We repeat this procedure for r =
1, 2, . . . , R and choose the model such that the average of the above mean test
error is minimized.

3. Importance Estimation

As we have seen in the previous section, the importance w(x) plays a cen-

tral role in covariate shift adaptation. However, the importance is unknown in
practice so we need to estimate it from samples.

Direct importance estimation methods that do not involve density estima-
tion steps have been developed recently4),16),26). Here we review one of those
direct methods called the Kullback-Leibler Importance Estimation Procedure
(KLIEP)26). Other methods will be reviewed in Section 6.

3.1 KLIEP
Let us model w(x) with the following linear model:

ŵ(x) = ⟨α, ψ(x)⟩ , (9)

where α ∈ ℜb is a model parameter vector and ψ(x) ∈ ℜb is a basis function.
Since the importance should be non-negative by definition, we suppose that both
α and ψ(x) are non-negative.

Using the importance estimation ŵ(x), we can estimate the test input density
pte(x) by

p̂te(x) = ptr(x)ŵ(x). (10)

Now we learn the parameter α so that the Kullback-Leibler divergence from
pte(x) to p̂te(x) is minimized:

KL[pte(x)||p̂te(x)] =
∫

D

pte(x) log
pte(x)

ptr(x)ŵ(x)
dx

=
∫

D

pte(x) log
pte(x)
ptr(x)

dx −
∫

D

pte(x) log ŵ(x)dx. (11)

Since the first term in Eq.(11) is independent of α, we ignore it and focus on the
second term, which we denote by JKLIEP:

JKLIEP =
∫

D

pte(x) log ŵ(x)dx ≈ 1
Nte

∑
x∈Dte

log ŵ(x), (12)

where an empirical approximation based on the test input samples is used. This
is the objective function to be maximized. The value of ŵ(x) should be properly
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normalized since it is a probability density function:

1 =
∫

D

p̂te(x)dx =
∫

D

ptr(x)ŵ(x)dx ≈ 1
Ntr

∑
x∈Dtr

ŵ(x), (13)

where the empirical approximation based on the training samples is used.
Then the resulting optimization problem is expressed as

maximize
α

∑
x∈Dte

log ⟨α,ψ(x)⟩ subject to
∑

x∈Dtr

⟨α,ψ(x)⟩ = Ntr and α ≥ 0,

which is convex. Thus the global solution can be obtained by iteratively per-
forming gradient ascent and feasibility satisfaction.

3.2 Model selection by likelihood CV
The performance of KLIEP depends on the choice of the basis functions ψ(x)

(and possibly an additional regularization parameter). Since KLIEP is based on
the maximization of the score JKLIEP, it would be natural to select the model
such that JKLIEP is maximized. The expectation over pte(x) involved in JKLIEP

can be numerically approximated by likelihood CV (LCV)12) as follows: First,
divide the test samples Dte into R disjoint subsets {Dr

te}R
r=1. Then, obtain an

importance estimate ŵr(x) from {Dt
te}R

t̸=r and approximate the score JKLIEP

using Dr
te as

Ĵr
KLIEP =

1
|Dr

te|
∑

x∈Dr
te

ŵr(x). (14)

This procedure is repeated for r = 1, 2, . . . , R for each model and choose the
model such that the average of Ĵr

KLIEP for all r is maximized.
One of the potential general limitations of CV is that it is not reliable in small

sample cases, since data splitting by CV further reduces the sample size. A
key advantage of the LCV procedure is that, not the training samples, but the
test input samples are cross-validated. This contributes greatly to improving
the model selection accuracy, since the number of training samples is typically
limited while there are lots of test input samples available.

As basis functions, it is suggested to use Gaussian kernels centered at a subset

of the test input points Dte
26):

Ks(x, xl) = exp
{
−∥x − xl∥2

2s2

}
, (15)

where xl ∈ Dte is a template test sample and s is the kernel width. This is a
heuristic to allocate many kernels at high test input density regions since many
kernels may be needed in the region where the output of the target function is
large. In the original paper, the number of Gaussian centers was fixed at Nte/10
for computational efficiency and the kernel width s was chosen by LCV.

4. KLIEP for Log-linear Models

As shown above, KLIEP has its own model selection procedure and has been
shown to work well in importance estimation26). However, it has a weakness in
computation time. In each step of gradient ascent, the summation over all test
input samples needs to be computed, which is prohibitively slow in large-scale
problems. The main contribution of this paper is to extend KLIEP so that it can
deal with large sets of test input data.

4.1 LL-KLIEP
In the original KLIEP, a linearly parameterized model (9) is used for modeling

the importance function. Here, we propose using a (normalized) log-linear model
for modeling the importance w(x) as

ŵ(x) =
exp(⟨α, ψ(x)⟩)

1
Ntr

∑
x′∈Dtr

exp(⟨α, ψ(x′)⟩)
, (16)

where the denominator guarantees the normalization constraint (13) ⋆1. By def-
inition, the log-linear model takes only non-negative values. Therefore, we no

⋆1 The log-linear model can have numerical problems since it contains an exponential function.
To cope with this problem, we do not directly compute the value of ŵ(x), but we compute
it in the exponential of the logarithmic domain, i.e.,

exp(log ŵ(x)) = exp(⟨α, ψ(x)⟩ − log
1

Ntr

∑
x∈Dtr

exp(⟨α, ψ(x)⟩)).

To further stabilize the computation, we compute the logarithmic sum of the exponential
functions as log(exp(a)+exp(b)) = log(1+exp(b−a)), where we pick the smaller exponent
as b.
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longer need the non-negative constraint for the parameter (and the basis func-
tions).

Then the optimization problem becomes unconstrained :

maximize
α

JLL−KLIEP(α),

where

JLL−KLIEP(α) =
1

Nte

∑
x∈Dte

log ŵ(x)

=
1

Nte

∑
x∈Dte

⟨α, ψ(x)⟩ − log
1

Ntr

∑
x∈Dtr

exp(⟨α, ψ(x)⟩). (17)

Below, we refer to this method as LL-KLIEP (log-linear KLIEP). In practice, we
may add a penalty term for regularization:

ȷ(α) = JLL−KLIEP(α) − ||α||2

2σ2
, (18)

where σ2 is a regularization parameter.
An advantage of LL-KLIEP over the original KLIEP is its computational effi-

ciency. The gradient of ȷ(α) can be computed as

∂ȷ(α)
∂α

=
1

Nte

∑
x∈Dte

ψ(x) −
∑

x∈Dtr

exp(⟨α, ψ(x)⟩)∑
x′∈Dtr

exp(⟨α, ψ(x′)⟩)
ψ(x) − α

σ2

=F − 1
Ntr

∑
x∈Dtr

ŵ(x)ψ(x) − α

σ2
, (19)

where

F =
1

Nte

∑
x∈Dte

ψ(x).

This means that once we pre-compute the value of F , we do not need to use the
test samples when we compute the gradient. This contributes greatly to reducing
the computation time when the number of test samples is large. In addition, we
do not need to store all of the test samples in memory since we only need the
value of F . The required storage capacity is only Ω(cNtr), where c is the average

number of non-zero basis entries.
As the model selection of KLIEP, LCV can be used to find the optimal hyper-

parameters of LL-KLIEP. Since JLL−KLIEP(α) is evaluated using both training
and test samples, both test and training samples can be divided into R disjoint
subset {Dr

te}R
r=1 and {Dr

tr}R
r=1 in the LCV procedure. After the estimation of

ŵr(x), JLL−KLIEP(α) can be approximated as

Ĵr
LL−KLIEP(α) =

1
|Dr

te|
∑

x∈Dr
te

⟨α, ψ(x)⟩ − log
1

|Dr
tr|

∑
x∈Dr

tr

exp(⟨α, ψ(x)⟩).

Although the proposed optimization procedure may be more efficient than orig-
inal KLIEP, there still exists a potential weakness: we still need to use all the
test samples when computing the values of JLL−KLIEP(α) or ȷ(α). The value of
JLL−KLIEP(α) is needed when we choose a model by LCV, and the value of ȷ(α)
is often utilized in line search or in the stopping criterion.

4.2 LL-KLIEP(LS)
Here, we introduce another optimization technique for LL-KLIEP that enables

us to overcome the above weakness. Our basic idea is to encourage the derivative
of the convex objective function to be zero. We use a squared norm to measure
the ‘magnitude’ of the derivative (19):

ȷLS(α) =
1
2

∥∥∥∥∂ȷ(α)
∂α

∥∥∥∥2

. (20)

The partial derivative of Eq.(20) with respect to α is expressed as

∂ȷLS(α)
∂α

=
∂2ȷ(α)
∂2α

∂ȷ(α)
∂α

. (21)

Note that the first component of Eq. (21) is the Hessian matrix of ȷ(α):

∂2ȷ(α)
∂2α

=

( ∑
x∈Dtr

1
Ntr

w(x)
(
ψ(x) − ψ(x)

)
ψ(x)T − I

σ2

)
,
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8 Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation

where

ψ(x) =
∑

x∈Dtr

1
Ntr

w(x)ψ(x),

ψ(x)T is the transpose of ψ(x), and I is the identity matrix. When we explicitly
compute the Hessian matrix of ȷ(α), the computational complexity of the deriva-
tive is O(b2Ntr), which is independent of Nte. Also, the required storage space is
independent of Nte: Ω(b2+cNtr). We refer to this approach as LL-KLIEP(LS1-a)
below.

The computation time and storage space of LL-KLIEP(LS1-a) are quadratic
functions of the number of parameters b, which could be a bottleneck in high
dimensional problems. To cope with this problem, we propose two approaches.

One approach for high dimensional problems is directly computing the product
between the Hessian matrix and the gradient vector of ȷ(α) without storing the
Hessian matrix:

∂ȷLS(α)
∂α

=

( ∑
x∈Dtr

1
Ntr

w(x)
(
ψ(x) − ψ(x)

)
⟨ψ(x), G⟩ − G

σ2

)
, (22)

where G = ∂ȷ(α)
∂α . Since the inner product ⟨ψ(x), G⟩ requires O(b) time, we can

compute Eq.(22) in total with O(bNtr) computation time and Ω(cNtr) space. We
refer this approach as LL-KLIEP(LS1-b), which is still independent of Nte and
suitable for high dimensional problems compared with LL-KLIEP(LS1-a).

In the other approach for high dimensional problems, we make use of the rep-
resenter theorem29). Our idea is to represent the parameter α as a linear combi-
nation of the input samples:

α =
∑

x∈Dtr

ψ(x)βx,

where {βx}x∈Dtr is a data-wise parameter. Then Eq.(20) can be rewritten as

ȷLS({βx}x∈Dtr) =
1
2

∥∥∥∥∥F −
∑

x∈Dtr

ψ(x)ω(x) −
∑

x∈Dtr

ψ(x)βx

σ2

∥∥∥∥∥
2

, (23)

where

ω(x) =
exp(

∑
x′∈Dtr

K(x, x′)βx′)∑
x′′∈Dtr

exp(
∑

x′∈Dtr
K(x′′, x′)βx′)

, (24)

K(x, x′) = ⟨ψ(x), ψ(x′)⟩ .

The partial derivative of Eq.(23) with respect to βx is:

∂ȷLS({βx}x∈Dtr)
∂βx

=⟨
F −

∑
x′∈Dtr

ψ(x′)
(

ω(x′) − βx′

σ2

)
,

∑
x′∈Dtr

ω(x′)ψ(x′) ⟨φ(x′), ψ(x)⟩ − ψ(x)
σ2

⟩
,

(25)

where φ(x) =
∑

x′∈Dtr
ω(x′)ψ(x′) − ψ(x). By the change of variables, it is

not required to calculate the partial derivative with respect to α so that we can
avoid the computation of the Hessian matrix of ȷ(α). We refer to this approach
as LL-KLIEP(LS2).

The computation of LL-KLIEP(LS2) requires O(bN2
tr) time and Ω(N2

tr + cNtr)
space. The computation time is linear with respect to the number of parameters
b and the storage space is independent of b. This is also an improvement over
the direct computation of the partial derivative in Eq.(21).

For LL-KLIEP(LS), LCV can also be computed very efficiently. In each vali-
dation set using Dr

te and Dr
tr, we can compute the validation error as

Ĵr
LL-KLIEP(LS) =

∥∥∥∥∥∥F r −
∑

x∈Dr
tr

ŵr(x)ψ(x)

∥∥∥∥∥∥
2

,

where

F r =
1

|Dr
te|

∑
x∈Dr

te

ψ(x).

Note that, once the mean basis vectors F r are calculated for all R disjoint subsets
of Dte, Ĵr

LL-KLIEP(LS) can be evaluated independently of the size of the test data
Dr

te.
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9 Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation

Table 1 Computational complexity and space requirements. Ntr is the number of training
samples, Nte is the number of test samples, b is the number of parameters, and c is
the average number of non-zero basis entries. “Precomp.” denotes the computational
complexity of once-off precomputation.

Computational complexity Space requirement

Precomp. Objective Derivative Objective Derivative

KLIEP 0 bNtr+bNte bNtr+bNte cNtr+cNte cNtr+cNte

LL-KLIEP bNte bNtr+bNte bNtr cNtr+cNte cNtr

LL-KLIEP(LS1-a) bNte bNtr b2Ntr cNtr b2+cNtr

LL-KLIEP(LS1-b) bNte bNtr bNtr cNtr cNtr

LL-KLIEP(LS2) bNte bN2
tr bN2

tr cNtr N2
tr+cNtr

The computational complexity and storage space of each method are summa-
rized in Table 1. In terms of the complexity analysis, LL-KLIEP(LS1-b) is the
best solution for the large amount of test inputs. We verified the analysis by the
computational experiments in Section 7.1.

5. Illustrative Examples

In this section, we illustrate the behavior of the proposed LL-KLIEP and show
how it can be applied in covariate shift adaptation.

5.1 Regression under covariate shift
Let us consider an illustrative regression problem of learning

f(x) = sinc(x).

Let the training and test input densities be ptr(x) = N (x; 1, 12) and pte(x) =
N (x; 2, 0.52), where N (x; µ, σ2) denotes the Gaussian density with mean µ and
variance σ2. We create the training output value {y(i)}Ntr

i=1 as y(i) = f(x(i))+ϵ(i),
where the noise {ϵ(i)}Ntr

i=1 has density N (ϵ; 0, 0.252). Let the number of training
samples be Ntr = 200 and the number of test samples be Nte = 1000. These
settings imply that we are considering an extrapolation problem (see Fig. 1(a)).

We used 100 Gaussian basis functions centered at randomly chosen test input
samples. Figure 1(b) shows the actual importance w(x) and an estimated
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Fig. 1 Importance estimation.
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Fig. 2 Model selection curve.

importance ŵ(x) by using LL-KLIEP, where the hyper-parameters such as the
Gaussian width and the regularization parameter are selected by LCV. We also
tested LL-KLIEP(LS1-a), LL-KLIEP(LS1-b), and LL-KLIEP(LS2), but we omit
their graphs since their solutions are almost identical to the solution of LL-
KLIEP.

Figure 2 depicts the values of the true JLL−KLIEP (see Eq.(17)) and its esti-
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Fig. 3 Regression under covariate shift (True and learned functions).

mate by 5-fold LCV. The means, the 25 percentiles, and the 75 percentiles over
each validation are plotted as functions of the kernel width s for the different
σ = 0.5, 1, 2. We also plot the normalized mean squared error of the estimated
importance:

NMSE =
1

Ntr

∑
x∈Dtr

(
ŵ(x)∑

x′∈Dtr
ŵ(x′)

− w(x)∑
x′∈Dtr

w(x′)

)2

. (26)

The graph shows that LCV gives a very good estimate of JLL−KLIEP and also
NMSE. Fig. 2 also shows that σ value affects the importance estimation in terms
of NMSE.

Figure 3 shows the true learning target function and functions learned by or-
dinary LS and IWLS with a linear basis function (Fig. 3(a)), i.e., ϕ(x) = (1, x)⊤,
and a quadratic basis function (Fig. 3(b)), i.e., ϕ(x) = (1, x, x2)⊤ (Section 2.2).
The regularization parameter λ was selected by CV for LS and IWCV for IWLS
(Sections 2.3). The results show that the learned function using IWLS goes
reasonably well through the test samples, while that of ordinary LS overfits the

Table 2 Specifications of illustrative classification data.

Training ptr(x, y) Test pte(x, y)
y = 0 y = 1 y = 0 y = 1

Fig. 4(a)
µ (-1,-1) (3,-1) (0,3.5) (4,2.5)

Σ

(
0.25 0
0 4

) (
0.25 0
0 0.25

)
Fig. 4(b)

µ (-1,0) (4,2) (0,2) (3,1)

Σ

(
0.75 0
0 1.5

) (
0.75 0.5
0.01 0.1

)

training samples. Note that the output of the test samples are not used to obtain
the learned functions.

5.2 Classification under covariate shift
Next, let us consider two illustrative binary classification problems, where two-

dimensional samples were generated from Gaussian distributions (see Table 2
and Fig. 4). These data sets correspond to a ‘linear shift’ and a ‘non-linear shift’
(rotation).

Let the number of the training samples be Ntr = 200 and that of the test
samples be Nte = 1000 (only 500 test samples are plotted for clarity). We used
LR/IWLR for the training classifiers (see Section 2.2), and employed CV/IWCV
for the regularization parameter tuning (see Section 2.3). We used a linear basis
function for LR/IWLR: ϕ(x) = (1, x⊤)⊤.

Figure 4 shows the decision boundaries obtained by LR+CV and
IWLR+IWCV. For references, we also show ‘OPT’, which is the optimal de-
cision boundary obtained using the test input-output samples. For the data set
depicted in Fig. 4(a), the correct classification rate of LR+CV is 99.1% while that
of IWLR+IWCV is 100%. For the data set depicted in Fig. 4(b), the correct clas-
sification rate of LR+CV is 97.2% while that of IWLR+IWCV is 99.1%. Thus,
for both cases, the prediction performance is improved by importance weighting.

6. Related Work and Discussion

In this section, we compare the proposed LL-KLIEP with existing importance
estimation approaches.

6.1 Kernel density estimator
The kernel density estimator (KDE) is a non-parametric technique to estimate
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Fig. 4 Classification examples under covariate shift.

a density p(x) from samples {xl}N
l=1. For the Gaussian kernel, KDE is expressed

as

p̂(x) =
1

(2πs2)d/2N

N∑
l=1

Ks(x, xl), (27)

where Ks(x,x′) is the Gaussian kernel (15). The performance of KDE depends
on the choice of the kernel width s, which can be optimized by LCV12). Note
that LCV corresponds to choosing s such that the Kullback-Leibler divergence
from p(x) to p̂(x) is minimized.

KDE can be used for importance estimation by first obtaining p̂tr(x) and p̂te(x)
separately from {x(i)}Ntr

i=1 and {x(i)}Nte
i=1 and then estimating the importance as

ŵ(x) = p̂te(x)/p̂tr(x). A potential limitation of this approach is that KDE
suffers from the curse of dimensionality12), since the number of samples needed
to maintain the same approximation quality grows exponentially as the dimension
of the input space increases. This is particularly critical when estimating ptr(x)
since the number of training input samples is typically limited. In addition,
model selection by LCV is unreliable in such cases, since data splitting in the CV
procedure further reduces the sample size. Therefore, in high-dimensional cases
LL-KLIEP may be more reliable than the KDE-based approach.

6.2 Kernel mean matching
The kernel mean matching (KMM) method avoids density estimation and di-

rectly gives an estimate of the importance at the training input points16).
The basic idea of KMM is to find w(x) such that the mean discrepancy between

nonlinearly transformed samples drawn from pte(x) and ptr(x) is minimized in
a universal reproducing kernel Hilbert space22). The Gaussian kernel (15) is an
example of kernels that induce universal reproducing kernel Hilbert spaces and
it has been shown that the solution of the following optimization problem agrees
with the true importance:

min
w(x)

∥∥∥∥∫
Ks(x, ·)pte(x)dx −

∫
Ks(x, ·)w(x)ptr(x)dx

∥∥∥∥2

F

subject to
∫

w(x)ptr(x)dx = 1 and w(x) ≥ 0,
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where ∥ · ∥F denotes the norm in the Gaussian reproducing kernel Hilbert space
and Ks(x, x′) is the Gaussian kernel (15).

An empirical version of the above problem is reduced to the following quadratic
program:

min
{w(x)}x∈Dtr

1
2

∑
x,x′∈Dtr

w(x)w(x′)Ks(x, x′) −
∑

x∈Dtr

w(x)κ(x)


subject to

∣∣∣∣∣ ∑
x∈Dtr

w(x) − Ntr

∣∣∣∣∣ ≤ Ntrϵ, and

0 ≤ w(x) ≤ B for all x ∈ Dtr,

where

κ(x) =
Ntr

Nte

∑
x′∈Dte

Ks(x, x′).

B (≥ 0), ϵ (≥ 0), and s (≥ 0) are tuning parameters. The solution {w(x)}x∈Dtr

is an estimate of the importance at the training input points.
Since KMM does not require density estimates, it is expected to work well even

in high dimensional cases. However, the performance is dependent on the tuning
parameters B, ϵ, and s and they cannot be optimized easily, e.g., by CV, since
estimates of the importance are available only at the training input points. Thus,
an out-of-sample extension is needed to apply KMM in the CV framework, but
this currently seems to be an open research issue.

Here, we show that LL-KLIEP(LS2) (see Eq.(23)) has a tight connection to
KMM. Up to irrelevant constants, Eq.(23) without a regularizer can be expressed
as

1
2

∑
x,x′∈Dtr

w(x)w(x′)Ks(x,x′) −
∑

x∈Dtr

w(x)κ(x),

which is exactly the same form as the objective function of KMM. Thus, KMM
and LL-KLIEP(LS2) share a common objective function, although they are de-
rived from very different frameworks.

However, KMM and LL-KLIEP(LS2) still have a significant difference—KMM

directly optimizes the importance values {w(x)}x∈Dtr , while LL-KLIEP(LS2)
optimizes the parameter {βx}x∈Dtr in the importance model (24). Thus, LL-
KLIEP(LS2) learns the entire importance function and therefore it allows us
to interpolate the value of the importance function at any input point. This
interpolation property is a significant advantage over KMM since it allows us to
use LCV for model selection. Therefore, LL-KLIEP(LS2) may be regarded as an
extension of KMM.

6.3 Logistic regression discriminating training and test input data
Another method to directly estimate the importance weights is to use a prob-

abilistic classifier. Let us assign a selector variable δ = −1 to the training inputs
and δ = 1 to the test inputs. This means that the training and test input densities
are written as

ptr(x) = p(x|δ = −1), pte(x) = p(x|δ = 1).

A simple calculation shows that the importance can be expressed in terms of δ

as4):

w(x) =
p(δ = −1)
p(δ = 1)

p(δ = 1|x)
p(δ = −1|x)

. (28)

The probability ratio p(δ = −1)/p(δ = 1) may be simply estimated using the ratio
of the numbers of training and test input samples. The conditional probability
p(δ|x) may be learned by discriminating between the test input samples and
the training input samples using LR, where δ plays the role of a class variable
(cf. Eq.(6)). Let us train the LR model by regularized maximum likelihood
estimation. The objective function to be maximized is given by

LR(α) =
∑

x∈Dte∪Dtr

δx⟨α,ψ(x)⟩−
∑

x∈Dte∪Dtr

log(1 + exp(δx⟨α, ψ(x)⟩))− ||α||2

2σ2
,

(29)

where the first term is the main likelihood term, the second term is a normalizer,
and the third term is a regularizer. Since this is a convex optimization problem,
the global solution can be obtained by standard non-linear optimization methods.
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The gradient of the objective function is given as

∂LR(α)
∂α

=
∑

x∈Dte∪Dtr

δxψ(x) −
∑

x∈Dte∪Dtr

δxpα(δx|x)ψ(x)−||α||2

2σ2
. (30)

Then the importance estimate is given by

ŵ(x) =
Ntr

Nte
exp(⟨α, ψ(x)⟩). (31)

We refer to this approach as LogReg.
Eq.(31) shows that the function model of the importance in LogReg is actually

the same as that of LL-KLIEP except for a scaling factor (cf. Eq.(16)). However,
the optimization criteria of LL-KLIEP and LogReg are different—in LL-KLIEP,
the summation is taken only over the training or test input samples but not
both, while the summation in LogReg is over both the training and test input
samples. This difference is significant since LogReg does not allow us to use
the computational trick we proposed in Section 4.2. Thus LL-KLIEP has the
advantage in computation time and storage space consumption over LogReg.

Bickel et al.4) proposed simultaneous optimization of both importance estima-
tor and classifier. Although their method can perform better than our two stage
method which solves importance estimation and classifier’s parameter estimation
separately, it has a weakness in model selection. Since the hyper-parameter of
their method is supposed to be tuned for test samples, CV is not applicable if
no labeled test sample is available. On the other hand, our method can select
hyper-parameters for both importance estimation by LCV and classification by
IWCV.

The characteristics of the proposed and related methods are summarized in
Table 3.

7. Experiments

In this section, we experimentally compare the performance of LL-KLIEP with
existing methods.

7.1 Toy experiments
Let ptr(x) = N (0d, Id) and pte(x) = N ((1, 0, . . . , 0)⊤, 0.752Id). The task is to

Table 3 Relation between the proposed and related methods.

Model selection
Direct importance

Optimization
model

KDE Available Not Available Analytic
KMM Not Available Non-parametric Constraint quadratic program
LogReg Available Log-linear Unconstraint non-linear
KLIEP Available Linear Constraint non-linear
LL-KLIEP Available Log-linear Unconstraint non-linear

estimate the importance at the training input points:

w(x) =
pte(x)
ptr(x)

for x ∈ Dtr.

We compared KLIEP, KDE, KMM, LogReg, LL-KLIEP, LL-KLIEP(LS1-
a),LL-KLIEP(LS1-b), and LL-KLIEP(LS2). For LL-KLIEP, LL-KLIEP(LS1-a),
LL-KLIEP(LS1-b), and LL-KLIEP(LS2), we used 5-fold LCV to choose the reg-
ularization parameter σ and the kernel width s. For KLIEP, we use 5-fold LCV
to choose the kernel width s. For KDE, we used 5-fold LCV to choose the kernel
widths for the training and test densities. For KMM, we used B = 1000 and
ϵ = (

√
Ntr−1)/

√
Ntr following the suggestion in the original KMM paper16). We

tested two different values of the kernel width (s = 0.1 and s = 1.0) for KMM
since there is no reliable method to determine the kernel width. For LogReg, we
used 5-fold CV to choose the regularization parameter σ and the kernel width s.

We fixed the number of test input samples at Nte = 1000 and considered the
following setting for the number of training input samples Ntr and the input
dimension d:
( 1 ) Ntr = 100 and d = 2, 4, . . . , 20.
( 2 ) d = 10 and Ntr = 50, . . . , 150.
We ran the simulation 100 times for each d and Ntr, and evaluated the estimation
accuracy of {w(x)}x∈Dtr by the mean NMSE (see Eq.(26)).

The mean NMSE over 100 trials is plotted in Fig. 5. The filled plot markers
indicate the best method and comparable ones based on the Wilcoxon signed
rank test at the significance level 1% in terms of the NMSE. We omitted the
graphs of LL-KLIEP(LS1-a), LL-KLIEP(LS1-b) and LL-KLIEP(LS2) since they
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Fig. 5 Mean NMSE over 100 trials. The filled plot markers indicate the best method and
comparable ones based on the Wilcoxon signed rank test at the significance level 1%
in terms of the NMSE. ‘KMM(s)’ denotes KMM with kernel width s.

are almost identical to the result of LL-KLIEP. Figure 5(a) shows that the
error of KDE sharply increases as the input dimension grows, while LL-KLIEP,
KLIEP, and LogReg tend to give much smaller errors than KDE. Figure 5(b)
shows that the errors of all methods tend to decrease as the number of training
samples grows. Again, LL-KLIEP and LogReg are shown to work well. These
would be the fruit of directly estimating the importance without going through
density estimation. The results of LL-KLIEP and LogReg are slightly better than
KLIEP, perhaps because the original KLIEP does not contain a regularizer; we
believe that the performance of KLIEP could be improved by adding a regularizer
as used in LL-KLIEP and LogReg. KMM also works reasonably well, as long as
the kernel width s is chosen appropriately. However, the performance of KMM
is highly dependent on s and determining its appropriate value may be difficult.
Overall, the accuracy of LL-KLIEP is comparable to the best existing approaches.

Next, we compared the computational cost of LL-KLIEP, LL-KLIEP(LS1-a),
LL-KLIEP(LS1-b), LL-KLIEP(LS2), and LogReg, which have good accuracy in
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Fig. 6 Average computation time over 100 trials. The horizontal axis represents the number
of test samples (Nte), and the vertical axis represents the elapsed time (millisecond),
respectively.

the previous experiments. We investigated the entire computation time of all
of them including cross-validation and the precomputation times for the test
samples. Note that the Gaussian width s and the regularization parameter σ are
chosen over the 5×5 equidistant grid in this experiment for all the methods. We
fixed the input dimension at d = 10 and changed the number of training input
points Ntr = 102, 103 and the number of test samples Nte = 102, 103, . . . , 106. We
repeated the experiments 100 times for each Ntr and Nte on the PC server with
an Intel R⃝ Xeon R⃝ 2.66GHz. All of them are implemented on R (http://www.r-
project.org) and conjugate gradient method was used to optimize their objective
functions.

Figure 6 shows the average elapsed times for LL-KLIEP, LL-KLIEP(LS1-
a), LL-KLIEP(LS1-b), LL-KLIEP(LS2), and LogReg. The results show that the
computational cost of LL-KLIEP and LogReg increases as the amount of test data
Nte grows, but the computational cost of LL-KLIEP(LS) is nearly independent
of the number of test samples Nte. This is in good agreement with our theoretical
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Fig. 7 Memory usage. The horizontal axis represents the number of test samples (Nte), and
the vertical axis represents the memory usage (MB), respectively.

analysis in Section 4.2. Thus the cost of dealing with a large amount of test data
in each optimization step is much higher than that at one time precomputation.

We also compared the memory usage of LL-KLIEP, LL-KLIEP(LS1-a), LL-
KLIEP(LS1-b), LL-KLIEP(LS2), and LogReg. We used the same implemen-
tation and computational environment as the previous experiments. Figure 7
shows the memory usage of each method. The results show that the space re-
quirement of LL-KLIEP and LogReg increases as the amount of test data Nte

grows, but that of LL-KLIEP(LS) is independent of the number of test data Nte.
In addition, we compared the computational cost of LL-KLIEP, LL-

KLIEP(LS1-a), LL-KLIEP(LS1-b), and LL-KLIEP(LS2) in detail. We examined
the combination of the following setting for the number of test samples Nte, the
number of training inputs Ntr, and the input dimension d:
• Nte = 102, 103, . . . , 106

• Ntr = 102, 103

• d = 102, 103, 104.
In this experiment, we used a linear basis function so that the number of bases
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Fig. 8 Average computation time over 100 trials. The horizontal axis represents the number
of test samples (Nte), and the vertical axis represents the elapsed time (millisecond),
respectively.

is equivalent to the input dimension. Since the computational time of cross-
validation is conceptually a scalar multiple of that of each optimization step, we
compared the computational time including the precomputation times for the test
inputs after the model parameters are fixed. We repeated the experiments 100
times for each Nte, Ntr, and d using the same implementation and computational
environment as the previous experiments.

Figure 8 shows the average elapsed times for LL-KLIEP, LL-KLIEP(LS1-a),
LL-KLIEP(LS1-b), and LL-KLIEP(LS2). When d = 103, the result of Nte = 106

was excluded because of the large memory requirements. As we expected,
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( 1 ) LL-KLIEP is faster than LL-KLIEP(LS) when the number of test samples
is small,

( 2 ) LL-KLIEP(LS1-a) is faster than LL-KLIEP(LS2) for lower dimensional
data,

( 3 ) both LL-KLIEP(LS1-b) and LL-KLIEP(LS2) are advantageous for high
dimensional problems, and

( 4 ) the computational cost of LL-KLIEP(LS1-b) increases for the larger
amount of training inputs.

Since LL-KLIEP(LS1-b) outperformed LL-KLIEP(LS2) in all the settings, we
conclude LL-KLIEP(LS1-b) is more suitable for high dimensional problems.
However, LL-KLIEP(LS1-a) is faster than LL-KLIEP(LS1-b) for lower dimen-
sional data against the complexity analysis. One reason for this result might
be that the computation of LL-KLIEP(LS1-b) is relatively complex in the iter-
ation of the training inputs compared with LL-KLIEP(LS1-a). Therefore, LL-
KLIEP(LS1-a) runs faster than LL-KLIEP(LS1-b) if the number of dimensions
is small enough not to ignore this overhead.

7.2 Natural language processing task
In this section, we show the experimental result that LL-KLIEP is applied to

the domain adaptation task of a natural language processing (NLP).
Since statistical NLP systems tend to perform worse in different domains be-

cause of differences in vocabulary and writing style, the domain adaptation of
NLP system is one of the important issues in NLP5),9),17).

In this experiment, we conducted domain adaptation experiments for the
Japanese word segmentation task. It is not trivial to detect word boundaries
for non-segmented languages such as Japanese or Chinese. In the word segmen-
tation task, x=(x1,x2, · · · , xT ) ∈ X represents a given sequence of character
boundaries of a sentence and y=(y1, y2, · · · , yT ) ∈ Y is a sequence of the corre-
sponding labels, which specify whether the current position is a word boundary.
It is reasonable to consider the domain adaptation task of word segmentation
systems as a covariate shift adaptation problem since word segmentation pol-
icy (p(y|x)) is rarely changed between domains in the same language, but the
distribution of characters (p(x)) tends to be changed between domains.

In the experiments, we used the same data and feature set as Tsuboi et al.28)

which aims to adapt a word segmentation system from a daily conversation do-
main to a medical domain. One of the characteristics of NLP tasks is high di-
mensionality. The total number of distinct features was about d = 300K in this
data. In this experiment, we used labeled (i.e. word segmented) Ntr = 13, 000
sentences for the source domain and unlabeled (i.e. unsegmented) Nte = 53, 834
sentences for the target domain. In addition, we have 1, 000 labeled target domain
sentences for the evaluation of the domain adaptation task.

As a word segmentation model, we employed Conditional Random Fields
(CRFs), which are the generalization of the LR (6) for structured prediction19).
CRFs model the conditional probability pθ(y|x) of output structure y given an
input x:

pθ(y|x) =
exp(⟨θ,Φ(x, y)⟩)∑

y∈Y exp(⟨θ,Φ(x, y)⟩)
, (32)

where Φ(x, y) : X × Y → ℜh denote a basis function mapping from a pair of
x and y to an h dimensional vector. Although conventional CRF learning algo-
rithms minimize the regularized negative log-likelihood, we implemented an im-
portance weighted CRF training algorithm (IWCRF) in the same way as IWLR:

θ̂IWCRF ≡ argmin
θ

 ∑
(x,y)∈Ztr

−w(x) log pθ(y|x) + λ∥θ∥2

 .

To estimate the importance of each sentence, we used the source domain data
as training data Dtr and the unlabeled target domain data as test data Dte. We
defined the basis function of the importance model ŵ(x) as the average value of
features for CRFs in a sentence:

ψ(x) =
1
T

T∑
t=1

xt. (33)

The performance measure in the experiments is the standard F measure score,
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F = 2RP/(R + P) where

R =
# of correct words

# of words in test data
× 100

P =
# of correct words

# of words in system output
× 100.

In addition, we tuned the hyper-parameter of IWCRF based on an importance
weighted F measure score, IWF, in which the number of correct words is weighted
by the importance of the sentence that these words belong to:

IWF(D) =
2 × IWR(D) × IWP(D)

IWR(D) + IWP(D)

for the validation set D where

IWR(D) =

∑
(x,y)∈D w(x)

∑
vt∈y[v̂t = vt]∑

(x,y)∈D

∑
vt∈y w(x)

× 100

IWP(D) =

∑
(x,y)∈D w(x)

∑
vt∈y[v̂t = vt]∑

(x,y)∈D

∑
v̂t∈ŷ w(x)

× 100, and

vt denotes a t-th word in a sentence (x, y) and v̂t denotes a t-th word of a system
prediction ŷ = argmaxy pθ(y|x). We used 1/10 of training data Dtr as the
validation set.

Then, we compared the target domain performance between CRF, IWCRF,
and CRF which was trained additionally using 1, 000 manual word segmenta-
tions, described in Tsuboi et al.28), denoted as “CRF + 1, 000”. For importance
estimation, we compared LL-KLIEP and LogReg for which we employed 5-fold
CV to find the optimal hyper-parameter σ.

Table 4 shows the result of the performance of each method. Surprisingly,
the F score of IWCRF (LL-KLIEP) outperformed not only that of CRF, but
also that of “CRF + 1, 000”, so the benefit of the importance weighting is worth
the manual labeling of 1, 000 words. Most notably, the empirical result shows
that the covariate shift adaptation technique improves the coverage (R) in the
target domain. Comparing with LogReg, LL-KLIEP results in higher final system
performance. Since it is easy to obtain large amounts of unlabeled text data in
NLP tasks, we believe the domain adaptation of NLP tasks is one of the promising

Table 4 Word segmentation performance in the target domain. “CRF + 1, 000” stands for
the performance of a CRF additionally using 1, 000 manual word segmentations of
the target domain.

F R P
CRF 92.30 90.58 94.08
IWCRF (LL-KLIEP) 94.46 94.32 94.59
IWCRF (LogReg) 93.68 94.30 93.07
CRF + 1, 000 94.43 93.49 95.39

applications of the proposed method.

8. Conclusions

In this paper, we addressed the problem of estimating the importance for co-
variate shift adaptation. We proposed a scalable direct importance estimation
method called LL-KLIEP. The computation time of LL-KLIEP is nearly inde-
pendent of the amount of test data, which is a significant advantage over existing
approaches when we deal with a large number of test samples. Our experiments
highlighted this advantage, and we experimentally confirmed that the accuracy
of the proposed method is comparable to the best existing methods. Finally, a
natural language processing experiment shows a promising result of the proposed
method for large-scale covariate shift adaptation.
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