
Neural Networks Leverage Corpus-wide Information
for Part-of-speech Tagging

Yuta Tsuboi
IBM Research - Tokyo
yutat@jp.ibm.com

Abstract

We propose a neural network approach to
benefit from the non-linearity of corpus-
wide statistics for part-of-speech (POS)
tagging. We investigated several types
of corpus-wide information for the words,
such as word embeddings and POS tag dis-
tributions. Since these statistics are en-
coded as dense continuous features, it is
not trivial to combine these features com-
paring with sparse discrete features. Our
tagger is designed as a combination of
a linear model for discrete features and
a feed-forward neural network that cap-
tures the non-linear interactions among the
continuous features. By using several re-
cent advances in the activation functions
for neural networks, the proposed method
marks new state-of-the-art accuracies for
English POS tagging tasks.

1 Introduction

Almost all of the approaches to NLP tasks such
as part-of-speech tagging and syntactic parsing
mainly use sparse discrete features to represent lo-
cal information such as word surfaces in a size-
limited window. The non-linearity of those dis-
crete features is often used in many NLP tasks
since the simple conjunction (AND) of discrete
features represents the co-occurrence of the fea-
tures and is intuitively understandable. In addi-
tion, the thresholding of these combinatorial fea-
tures by simple counts effectively suppresses the
combinatorial increase of the parameters. At the
same time, although global information had also
been used in several reports (Nakagawa and Mat-
sumoto, 2006; Huang and Yates, 2009; Turian et
al., 2010; Schnabel and Schütze, 2014), the non-
linear interactions of these features were not well
investigated since these features are often dense

continuous features and the explicit non-linear ex-
pansions are counterintuitive and drastically in-
crease the number of the model parameters. In our
work, we investigate neural networks used to rep-
resent the non-linearity of global information for
POS tagging in a compact way.

We focus on four kinds of corpus-wide infor-
mation: (1) word embeddings, (2) POS tag dis-
tributions, (3) supertag distributions, and (4) con-
text word distributions. All of them are continuous
dense features and we use a feed-forward neural
network to exploit the non-linearity of these fea-
tures. Although all of them except (3) have been
used for POS tagging in previous work (Nakamura
et al., 1990; Schmid, 1994; Schnabel and Schütze,
2014; Huang and Yates, 2009), we propose a neu-
ral network approach to capture the non-linear in-
teractions of these features. By feeding these fea-
tures into neural networks as an input vector, we
can expect our tagger can handle not only the non-
linearity of the N-grams of the same kinds of fea-
tures but also the non-linear interactions among
the different kind of features.

Our tagger combines a linear model using
sparse high-dimensional features and a neural net-
work using continuous dense features. Although
Collobert et al. (2011) seeks to solve NLP tasks
without depending on the feature engineering of
conventional NLP methods, our architecture is
more practical because it integrates the neural
networks into a well-tuned conventional method.
Thus, our tagger enjoys both the manually ex-
plored combinations of discrete features and the
automatically learned non-linearity of the contin-
uous features. We also studied some of the newer
activation functions: Rectified Linear Units (Nair
and Hinton, 2010), Maxout networks (Goodfel-
low et al., 2013), and Lp-pooling (Gulcehre et al.,
2014; Zhang et al., 2014).

Deep neural networks have been a hot topic
in many application areas such as computer vi-



sion and voice recognition. However, although
neural networks show state-of-the-art results on
a few semantic tasks (Zhila et al., 2013; Socher
et al., 2013; Socher et al., 2011), neural net-
work approaches have not performed better than
the state-of-the-art systems for traditional syn-
tactic tasks. Our neural tagger shows state-of-
the-art results: 97.51% accuracy in the standard
benchmark on the Penn Treebank (Marcus et al.,
1993) and 98.02% accuracy in POS tagging on
CoNLL2009 (Hajič et al., 2009). In our experi-
ments, we found that the selection of the activation
functions led to large differences in the tagging ac-
curacies. We also observed that the POS tags of
the words are effectively clustered by the hidden
activations of the intermediate layer. This obser-
vation is evidence that the neural network can find
good representations for POS tagging.

The remainder of this paper is organized as fol-
lows. Section 2 introduces our deterministic tag-
ger and its learning algorithm. Section 3 describes
the continuous features that represent corpus-wide
information and Section 4 is about the neural net-
work we used. Section 5 presents our empiri-
cal study of the effects of corpus-wide informa-
tion and neural networks on English POS tagging
tasks. Section 6 describes related work, and Sec-
tion 7 concludes and suggests items for future
work.

2 Transition-based tagging

Our tagging model is a deterministic tagger based
on Choi and Palmer (2012), which is a one-pass,
left-to-right tagging algorithm that uses well-tuned
binary features.

Let x = (x1, x2, . . . , xT ) ∈ XT be an
input token sequence of length T and y =
(y1, y2, . . . , yT ) ∈ Y T be a corresponding POS
tag sequence of x. We denote the predicted tags
by a tagger as ŷ and the subsequence from r to t
as yt

r. The prediction of the t-th tag is determinis-
tically done by the classifier:

ŷt = argmax
y∈Y

fθ(zt, y), (1)

where fθ is a scoring function with arbitrary pa-
rameters, θ ∈ Rd, that are to be learned and zt is
an arbitrary feature representation of the t-th po-
sition using x and ŷt−1

1 which is the prediction
history of the previous tokens.

We extend Choi and Palmer (2012) in three
ways: (1) an online SVM learning algorithm with

L1 and L2 regularization, (2) continuous features
for corpus-wide information, and (3) the compos-
ite function of a linear model for discrete features
and a non-linear model for continuous features.
Since (2) and (3) are the main topics of this pa-
per, they are explained in detail in Sections 3 and
4 and we describe only (1) here.

First, our learning algorithm trains a multi-class
SVM with L1 and L2 regularization based on Fol-
low the Proximally Regularized Leader (FTRL-
Proximal) (McMahan, 2011). In the k-th iteration,
the parameter update is done by

θk=argmin
θ

k∑
l=1

(
gl · θ+ 1

2ηl

∣∣∣∣∣∣θ−θl
∣∣∣∣∣∣2
2

)
+R(θ),

where gk ∈ Rd is a subgradient of the hinge loss
function and R(θ) = λ1 ||θ||1 + λ2

2 ||θ||
2
2 is the

composite function of the L1 and L2 regulariza-
tion terms with hyper-parameters λ1 ≥ 0 and
λ2 ≥ 0. To incorporate an adaptive learning rate
scheduling, Adagrad (Duchi et al., 2010), we use
per-coordinate learning rates for {i|1 ≤ i < d}:

ηki =
αi(

βi +
√∑k

l=1(g
l
i)
2

) ,

where α ≥ 0 and β ≥ 0. Although the
naive implementation may require O(k) compu-
tation in the k-th iteration, FTRL-Proximal can
be implemented efficiently by maintaining two
length-d vectors, m =

∑k
l g

l − 1
2ηlθ

l and n =∑k
l (g

l
i)
2 (McMahan et al., 2013).

Second, to overcome the error propagation
problem, we train the classifier with a simple vari-
ant of the on-the-fly example generation algorithm
from Goldberg and Nivre (2012). Since the scor-
ing function refers to the prediction history, Choi
and Palmer (2012) uses the gold POS tags, yt−1

1 ,
to generate training examples, which means they
assume all of the past decisions are correct. How-
ever, this causes error propagation problems, since
each state depends on the history of the past deci-
sions. Therefore, at the k-th iteration and the t-th
position of the input sequence, we simply use the
predictions of the previously learned classifiers to
generate training examples, i.e.,

ŷt−r = argmax
y∈Y

fθk−r
(zt−r, y)

for all {r|1 ≤ r < t − 1}. Although it is
not theoretically justified, it empirically runs as a



stochastic version of DAGGER (Ross et al., 2011)
or SEARN (Daumé III et al., 2009) with the speed
benefit of online learning.

Algorithm 1 Learning algorithm

function LEARN(α,β,λ1,λ2,m,n,θk)
while ¬ stop do

Select a random sentence (x,y)
for t = 1 to T do

u=UPDATE(α,β,λ1,λ2,m,n,θk)
ŷt = argmaxy∈Y fu(zt, y)
ỹ = argmaxy ̸=yt fu(zt, , y)
if fu(zt, yt)− fu(zt, ỹ) < 1 then

g=∂uℓ(zt, yt, ỹ) ▷ Subgradient
For all i ∈ I compute

σi =
(√

ni + g2i −
√
ni

)
/αi

mi ← mi + gi − σiui
ni ← ni + g2i

end if
k ← k + 1

end for
end while
return θk

end function

function UPDATE(α,β,λ1,λ2,m,n,θk)
for i ∈ I do

θki=

0 if |mi| ≤ λ1
−mi+sgn(mi)λ1

(βiλ2+
√
ni)/αi+λ2

otherwise

ui ← θki
if acceleration then

ui ← θki + k
k+3

(
θki − θk−1

i

)
end if

end for
for i ̸∈ I do

ui ← θki ← θk−1
i

▷ Leaving all θ for inactive i unchanged
end for
return u

end function

Algorithm 1 summarizes our training process
where ℓ(zt, yt, ỹ) := max(0, 1 − fθ(zt, y) +
fθ(zt, ỹ)) is the multi-class hinge loss (Crammer
and Singer, 2001). I in Algorithm 1 is a set of
parameter indexes that correspond to the non-zero
features, so the update is sparse for sparse fea-
tures. In addition, for the parameter update of the
neural networks, we also use an accelerated prox-
imal method (Parikh and Boyd, 2013), which is

considered as a variant of the momentum meth-
ods (Sutskever et al., 2013). Although u and θ are
the same when the acceleration is not used, u in
Algorithm 1 is an extrapolation step in the accel-
erated method. Although we do not focus on the
learning algorithm in this work, the algorithm con-
verges quite quickly and the speed is important be-
cause the neural network extension described later
requires a hyper-parameter search which is com-
putationally demanding.

3 Corpus-wide Information

Since typical discrete features indicate only the
occurrence in a local context and do not convey
corpus-wide statistics, we studied four kinds of
continuous features for POS tagging to represent
the corpus-wide information.

3.1 Word embeddings

Word embeddings, or distributed word represen-
tations, embed the words into a low-dimensional
continuous space. Most of the neural network ap-
plications for NLP use word embeddings (Col-
lobert et al., 2011; Socher et al., 2011; Zhila et
al., 2013; Socher et al., 2013), and even for linear
models, Turian et al. (2010) highlights the benefit
of word embeddings on sequential labeling tasks.

In particular, in our experiments, we used two
recently proposed algorithms, word2vec (Mikolov
et al., 2013) and glove (Pennington et al.,
2014), which are simple and scalable, although
our method could use other word embeddings.
Word2vec trains the word embeddings to pre-
dict the words surrounding each word, and glove
trains the word embeddings to predict the loga-
rithmic count of the surrounding words of each
word. Thus, these embeddings can be seen as
the distributed versions of the distributional fea-
tures since the word vectors compactly represent
the distribution of the context in which a word ap-
pears. We normalized the word embeddings to
unit length and used the average vector of training
vocabulary for the unknown tokens.

3.2 POS tag distribution

In a way similar to Schmid (1994), we use POS tag
distribution over a training corpus. Each word is
represented by a vector of length |Y | in which the
y-th element is the conditional probabilities with
which that word gets the y-th POS tag. We also
use the POS tag distributions of the affixes and



spelling binary features used in Choi and Palmer
(2012). We cite the definitions of these features.

1. Affix: c:1, c:2, c:3, cn:, cn−1:, cn−2:, cn−3:

where c∗ is a character string in a word. For
example c:2 is the prefix of length two of a
word and cn−1: is the suffix of length two of
a word.

2. Spelling: initial uppercase, all upper-
case, all lowercase, contains 1/2+ capi-
tal(s) not at the beginning, contains a (pe-
riod/number/hyphen).

The probabilities for a feature b is estimated with
additive smoothing as

P (y|b) = C(b, y) + 1

C(b) + |Y |
, (2)

where C(b) and C(b, y) are the counts of b and
co-occurrences of b and y, respectively. In addi-
tion, an extra dimension for sentence boundaries
is added to the vector for word-forms. In total, the
POS tag distributions for each word are encoded
by a vector of dimension |Y |+1+|Y |×14 (|Y | for
lowercase simplified word-forms, 1 for sentence
boundaries, |Y | × 7 for affixes, and |Y | × 7 for
spellings).

3.3 Supertag distribution

We also use the distribution of supertags for de-
pendency parsing. Supertags are lexical templates
which are extracted from the syntactic dependency
structures and suppertagging is often used for the
pre-processing of a parsing task. Since the su-
pertags encode rich syntactic information, we ex-
pect the supertag distribution of a word to also
provide clues for the POS tagging. We used two
types of supertags: One is the dependency rela-
tion label of the head of the word and the other
is that of the dependents of the word. Following
Ouchi et al. (2014), we added the relative posi-
tion, left (L) or right (R), to the supertags. For
example, a word has its dependents in the left di-
rection with a label “nn” and in the right direc-
tion with a label “amod”, so its supertag set for
dependents is {“nn/L”, “amod/R”}. A special su-
pertag “NO-CHILD” is used for a word that has
no dependent. Note that, although the Model 2 su-
pertag set of Ouchi et al. (2014) is defined as the
combination of head and dependent tags, we used
them separately. The feature values for each word

are defined in the same way as Equation 2 in Sec-
tion 3.2. Since a word can have more than one
dependent, the dependent supertag features are no
longer multinomial distributions but we used them
in that way. Note that, since the feature values are
calculated using the tree annotations from training
set, our tagger does not require any dependency
parser at runtime.

3.4 Context word distribution

This is the simplest distributional features in
which each word is represented by the distribu-
tions of its left and right neighbors. Although the
context word distribution is similar to word em-
beddings, we believe they complement each other,
as reported by Levy and Goldberg (2014). Fol-
lowing Schnabel and Schütze (2014), we restricted
the set of indicator words to the 500 most frequent
words in the corpus, and used two special feature
entries: One is the marginal probability of the non-
indicator words and the other is the probabilities
of neighboring sentence boundaries. The condi-
tional probabilities for left and right neighbors are
estimated in the same way as Equation 2 in Sec-
tion 3.2, and there are a total of 1, 004 dimensions
of this feature for a word.

4 Neural Networks

The non-linearity of the discrete features has been
exploited in many NLP tasks, since the simple
conjunction of the discrete features is intuitive and
the thresholding of these combinatorial features
by their feature counts effectively suppresses the
combinatorial increase of the parameters.

In contrast, it is not easy to manually tune the
non-linearity of the continuous features. For ex-
ample, it is not intuitive to design the conjunc-
tion features of two kinds of word embeddings,
word2vec and glove. Although kernel methods
have been used to incorporate non-linearity in
prior research, they are rarely used now because
their tagging speed is too slow (Giménez and
Màrquez, 2003). Our solution is to introduce
feed-forward neural networks to capture the non-
linearity of the corpus-wide information.

4.1 Hybrid model

We designed our tagger as a hybrid of a linear
model and a non-linear model. Wang and Man-
ning (2013) reported that a neural network us-
ing both sparse discrete features and dense (low-



Figure 1: A hybrid architecture of a linear model
and a neural network with a pooling activation
function

dimensional) continuous features was worse than
a linear model using the same two features. At
the same time, they also reported that a neural net-
work using only the dense continuous features out-
performed a linear model using the same features.
Based on their results, we applied neural networks
only for the continuous features and used a linear
model for the discrete features.

Formally, the scoring function (1) in Section 2
is defined as the composite function of two terms:
f(z, y) := flinear(z, y)+fnn(z, y). The first flinear
is the linear model and the second fnn is a neu-
ral network. Since this is a linear combination of
two functions, the subgradient of the loss function
required for Algorithm 1 is also the linear com-
bination of subgradients of two functions, which
means

∂θℓ(zt, yt, ỹ) = ∂θflinear(zt, ỹ) + ∂θfnn(zt, ỹ)

− ∂θflinear(zt, yt)− ∂θfnn(zt, yt)

if fθ(zt, yt)− fθ(zt, ỹ) < 0.
First, the linear model can be defined as

flinear(z, y) := θd · ϕd(z, y),

where ϕd(z, y) is a feature mapping for the dis-
crete part of z and a POS tag, and θd is the cor-
responding parameter vector. Since this is a lin-
ear model, the gradient of this function is simply
∂θflinear(z, y) = ϕd(z, y).

Second, each hidden layer of our neural net-
works non-linearly transforms an input vector h′

into an output vector h and we can say h′ is the
continuous part of z at the first layer. Let hL be
a hidden activation of the top layer, which is the
non-linear transformation of the continuous part
of z. The output layer of the neural network is
defined as

fnn(z, y) := θo · ϕo(h
L, y),

where ϕo(h, y) is a feature mapping for the hidden
variables and a POS tag, and θo is the correspond-
ing parameter vector.

4.2 Activation functions

The hidden variables h are computed by the re-
cursive application of a non-linear activation func-
tion. Since new styles of the activation functions
were recently proposed, we review several acti-
vation functions here. Let v ∈ R|V | be the in-
put of an activation function and each element is
vj = θnn,j · h′ + θbias,j , where θnn,j is the param-
eter vector for vj and θbias,j is the bias parameter
for vj . We also assume v is divided into groups
of size G, and denote the j-th element of the i-th
group as {vij |1 ≤ i ≤ |V |/G ∧ 1 ≤ j ≤ G}. We
studied three activation functions:

1. Rectified linear units (ReLUs) (Nair and Hin-
ton, 2010):

hj = max(0, vj) for all {j|1 ≤ j ≤ |V |}.

Note that a subgradient of ReLUs is

∂hj
∂θ

=

{
∂vj
∂θ if vj > 0

0 otherwise.

2. Maxout networks (MAXOUT) (Goodfellow
et al., 2013):

hi = max
1≤j≤G

vij for all {i|1 ≤ i ≤ |V |
G
}.

Note that a subgradient of MAXOUT is

∂hi
∂θ

=
∂viĵ
∂θ

, where ĵ = argmax
1≤j≤G

vij

3. Normalized Lp-pooling (Lp) (Gulcehre et al.,
2014):

hi =

 1

G

G∑
j=1

|vij |p
 1

p

for all {i|1 ≤ i ≤ |V |
G
}.

Note that a subgradient of Lp is

∂hi
∂θ

=

G∑
j=1

∂vij
∂θ

vij |vij |p−2

G

 1

G

G∑
j=1

|vi,j |p
 1

p
−1

.



The activation inputs for each predefined group,
{v1j , . . . , vGj}, are aggregated by a non-linear
function in MAXOUT or Lp activation functions,
while each input is transformed into a correspond-
ing hidden variable in the ReLUs. When the
number of parameters required for these activation
functions is the same, the number of output vari-
ables h for MAXOUT and Lp is one-G-th smaller
than that for ReLUs. Boureau et al. (2010) show
pooling operations theoretically reduce the vari-
ance of hidden activations, and our experimental
results also show MAXOUT and Lp perform bet-
ter than the ReLUs with the same number of pa-
rameters. Note that MAXOUT is a special case
of unnormalized Lp pooling when p = ∞ and
vj > 0 for all j (Zhang et al., 2014). Figure 1
summarizes the proposed architecture with a sin-
gle hidden layer and a pooling activation function.

4.3 Hyper-parameter search
Finally, the subgradients of the neural network,
fnn(z, y), can be computed through standard
back-propagation algorithms and we can apply
them in Algorithm 1. However, many of the hyper-
parameters have to be determined for the training
of the neural networks, and two stages of random
hyper-parameter searches (Bergstra and Bengio,
2012) are used in our experiments. Note that the
parameters are grouped into three sets, θd,θo,θnn,
and the same values for λ1, λ2, α, β are used for
each parameter set.

In the first stage, we randomly select 32 combi-
nations of λ2 for fnn, λ1, λ2 for flinear, the epoch
to start the L1/L2 regularizations, and the on and
off the acceleration in Algorithm 1. Here are the
candidates of three hyper-parameters:

1. λ1: 0 for the update of fnn and
{0, 10−8, 10−6, 10−4, 10−2, 1} for the
update of flinear;

2. λ2: {0.1, 0.5, 1, 5, 10} for the update of
fnn and {1, 5, 10, 50, 100} for the update of
flinear; and

3. Epoch to start the regularizations: {0, 1, 2}.

In the second stage with each hyper-parameter
combination above, we select 8 random combina-
tions of α, β for both flinear and fnn and initial pa-
rameter ranges R for fnn. Here are the candidates
of the three hyper-parameters:

1. α: {0.01, 0.05, 0.1, 0.5, 1, 5};

Data Set #Sent. #Tokens #Unknown
Training 38,219 912,344 0
Development 5,527 131,768 4,467
Testing 5,462 129,654 3,649

Table 1: Data set splits for PTB.

2. β: {0.5, 1, 5};

3. R: {[−0.1, 0.1], [−0.05, 0.05], [−0.01, 0.01],
[−0.005, 0.005]}.

The values of θ for fnn are uniformly sampled in
the range of the randomly selected R. Note that,
according to Goodfellow et al. (2014), the biases
θbias are initialized as 0 for MAXOUT and Lp, and
uniformly sampled from a range R + max(R),
i.e., always initialized with non-negative values.
The best combination for the development set is
chosen after training that uses random 20% of the
training set at the second stage, and Algorithm 1
is terminated when the all token accuracy of the
development data has been declining for 5 epochs
at the first stage. In other words, 32 × 8 random
combinations of α, β, and θ for fnn were tested.

5 Experiments

5.1 Setup

Our experiments were mainly performed using
the Wall Street Journal from Penn Treebank
(PTB) (Marcus et al., 1993). We used tagged sen-
tences from the parse trees (Toutanova et al., 2003)
and followed the standard approach of splitting the
PTB, using sections 0–18 for training, section 19–
21 for development, and section 22–24 for testing
(Table 1). In addition, we used the CoNLL2009
data sets with the training, development, and
test splits used in the shared task (Hajič et al.,
2009) for better comparison with a joint model of
POS tagging and dependency parsing (Bohnet and
Nivre, 2012).

Our baseline tagger was trained by Algorithm 1.
As discrete features for our tagger, we used the
same binary feature set as Choi and Palmer (2012)
which is composed of (a) 1, 2, 3-grams of the
surface word-forms and their predicted/dominated
POS tags, (b) the prefixes and suffixes of the
words, and (c) the spelling types of the words. In
the same way as Choi and Palmer (2012), we used
lowercase simplified word-forms which appeared
at least 3 times.



In addition to their binary features, we used con-
tinuous features which are the concatenation of the
corpus-wide features in a context window. The
window of size w = 2s + 1 is the local context
centered around xt: xt−s, · · · , xt, · · · , xt+s. The
experimental settings of each feature described in
Section 3 are as follows.

Word embeddings
We used two word vectors: 300-dimensional
vectors that were learned by word2vec using
a part of the Google News dataset (around
100 billion tokens) 1, and 300-dimensional
vectors that were learned by glove using a
part of the Common Crawl dataset (840 bil-
lion tokens) 2. For sentence boundaries, we
use the vector of the special entry “</s>” for
the word2vec embeddings and the zero vec-
tor for the glove embeddings.

POS tag distribution
The counts are calculated using training data.

Supertag distribution
In the experiments on PTB, we used the Stan-
ford parser v2.0.43 to convert from phrase
structures to dependency structures so that
the dependency relation labels of the Stan-
ford dependencies are used. The size of the
supertag set is 85 for both heads and depen-
dents in our experiments. In the experiments
on CoNLL2009, the dependency structures
and labels defined in CoNLL2009 are used
and the size of supertag set is 99 for both
heads and dependents.

Context word distribution
To count the neighboring words in our exper-
iments, we used sections 0–18 of the Wall
Street Journal and all of the Brown corpus
from Penn Treebank (Marcus et al., 1993).

Since the training of the neural networks is com-
putationally demanding, first, we trained the lin-
ear classifiers using Algorithm 1 to select the best
window sizes for each corpus-wide information of
Section 3. Then the best window size setting for
the development set of PTB was used for train-
ing the neural networks described in Section 4.

1The pre-trained vectors are available at https://
code.google.com/p/word2vec

2The pre-trained vectors are available at http://nlp.
stanford.edu/projects/glove/

3http://nlp.stanford.edu/software/
lex-parser.shtml

Window size Accuracy (%)
# w2v glv pos stg cw All Unk.
1 - - - - - 97.15 86.81
2 3 - - - - 97.36 88.96
3 - 3 - - - 97.34 89.55
4 3 3 - - - 97.40 90.44
5 3 3 3 - 1 97.44 90.17
6 3 3 3 1 1 97.44 90.53
7 3 3 3 3 1 97.45 90.22
8 3 3 6 - 1 97.41 90.51
9 3 3 6 3 1 97.44 90.15

Table 2: Feature and window size selection: de-
velopment accuracies of all tokens (All) and un-
known tokens (Unk.) of linear models trained on
PTB (w2v: word2vec; glv: glove; pos: POS tag
distribution; stg: supertag distribution; cw: con-
text word distribution).

We fixed the group size at 8 for MAXOUT and
Lp, and the number of hidden variables was cho-
sen from {32, 48} for MAXOUT and Lp and from
{32, 64, 128, 256, 384} for ReLUs according to all
token accuracy on the development data of PTB.
We report the POS tagging accuracy for both all
of the tokens and only for the unknown tokens that
do not appear in the training set.

5.2 Results

Table 2 shows the accuracies of the linear models
on PTB with different window sizes for the con-
tinuous features. The window sizes of the word
embeddings (word2vec and glove) in Section 3.1,
POS tag distributions in Section 3.2, supertag dis-
tributions in Section 3.3, and context word distri-
butions in Section 3.4 are shown in the columns
of w2v, glv, pos, stg, and cw, respectively. Note
that “-” denotes the corresponding feature was not
used at all and the first row with all “-” denotes the
results only using the original binary features from
Choi and Palmer (2012). The window sizes in Ta-
ble 2 are chosen mainly to investigate the effect
of the word2vec embeddings, glove embeddings,
and supertag distributions, since they had not pre-
viously been used for POS tagging.

The additions of the word embeddings improve
all token accuracy by about 0.2 points accord-
ing to the results shown in Nos. 1, 2, 3. Al-
though both word embeddings improved the ac-
curacy of the unknown tokens, the gain of the
glove embeddings (No. 3) is larger than that of the

https://code.google.com/p/word2vec
https://code.google.com/p/word2vec
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml


Neural Network Settings Development Set Test Set
# Activation functions #Hidden Group size (G) All Unk. All Unk.
1 Linear model - - 97.45 90.22 97.46 91.39
2 ReLUs 384 1 97.45 90.87 97.42 91.04
3 Lp(p = 2) 48 8 97.52 90.91 97.51 91.64
4 Lp(p = 3) 32 8 97.51 90.91 97.51 91.53
5 MAXOUT 48 8 97.50 90.89 97.50 91.67
6 Lp(p = 2) (w/o linear part) 48 8 97.39 91.18 97.40 91.23

Table 3: Development and test accuracies of all tokens and unknown tokens (%) on PTB.

Tagger All Unk.
Manning (2011) 97.32 90.79
Søgaard (2011) 97.50 N/A
Lp(p = 2) 97.51 91.64

(a) Test accuracies on PTB

Tagger All Unk.
Bohnet and Nivre (2012) 97.84 N/A
Lp(p = 2) 98.02 92.01

(b) Test accuracies on CoNLL2009

Table 4: Test accuracies of all tokens and unknown tokens (%) comparing with the previously reported
results

word2vec (No. 2). The reason for this difference
in the two embeddings may be because the train-
ing data for the glove vectors is 8 times larger than
that for the word2vec vectors. The usage of the
two word embeddings shows further improvement
in the tagging accuracy over single word embed-
dings (No. 4).

The addition of the POS tag distributions and
the context word distributions improves all token
accuracy (Nos. 5, 8). The comparison between the
results with stag=“-” (Nos. 5, 8) and stag = {1, 3}
(Nos. 6, 7, 9) indicates the minor but consistent
improvement by using the supertag distribution
features in Section 3.3. Finally, the 7th window-
size setting in Table 2 achieves the best all token
accuracy among the linear models, so we chose
this setting for the experiments with the neural net-
works.

In Table 3, we compare the different settings of
the neural networks with a single hidden layer 4

on the development set and test set from PTB.
Neural networks with the MAXOUT and Lp

(Nos. 3, 4, 5) significantly outperform the best lin-
ear model (No. 1) 5, but the accuracy of the Re-
LUs (No. 2) was similar to that of the best lin-
ear model. According to these results, we argue

4We leave the investigation of deeper neural networks as
future work.

5For significance tests, we have used the Wilcoxon
matched-pairs signed-rank test at the 95% confidence level
dividing the data into 100 data pairs.

that the activation function selection is important,
although conventional research in NLP has used
only a single activation function. It took roughly
7 times as long to learn the hybrid models than
the linear model (No. 1). “Lp(p = 2) (w/o linear
part)” (No. 6) shows the result for a Lp(p = 2)
model which does not include the linear model
flinear for the binary features. Comparing the test
results of No. 6 with that of No. 3, the proposed
hybrid architecture of a linear model and a neural
network enjoys the benefits of both models. Note
that No. 6’s accuracies of the unknown tokens are
relatively competitive, and this may be because the
continuous features for the neural network do not
include word surfaces.

Since it shows the best accuracy for all tokens
on the development set, we refer to Lp(p = 2)
with 48 hidden variables and the group size of 8
(No. 3 in Table 3) as our representative tagger and
denote it as Lp(p = 2) in the rest of discussion.
In Table 4a, we compare our result with the pre-
viously reported results and we see that our tagger
outperforms the current state-of-the-art systems on
PTB for the accuracies of all tokens and unknown
tokens.

In addition, since our tagger was trained us-
ing the dependency tree annotations as described
in Section 3.3, we compare it with the results of
Bohnet and Nivre (2012) which is also trained
using both POS tag and dependency annotations.
Although their focus is on the dependency pars-
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Figure 2: Scatter plots of verbs for all combinations between the first four principal components of the
raw features and the activation of hidden variables.

ing, they report state-of-the art POS accuracies
for many languages. Note that Bohnet and Nivre
(2012) also used external resources. Table 4b
gives the results for CoNLL2009 data set6. Our
tagger outperform Bohnet and Nivre (2012), so we
believe this is the highest POS accuracy ever re-
ported for a tagger trained on this data set.

Finally, to visualize the learned representations,
we applied principal components analysis (PCA)
to the hidden activations hL of the first 10, 000 to-
kens of the development set from PTB. We also
performed PCA to the raw continuous inputs of
the same data set. Figure 2 shows the data plots
for all the combinations among the first four prin-
cipal components. We plots only the verb tokens
to make the plots easier to see. Figures 2a and
2b show the PCA results of the raw features and
the hidden activations of Lp(p = 2), respectively.
Compared to Figure 2a, the tokens with the same
POS tag are more clearly clustered in Figure 2b.
This suggests the neural network learned the good
representations for POS tagging and these hidden
activations can be used as the input of the succeed-
ing processes, such as parsing.

6The accuracies of our tagger on the development set of
CoNLL2009 data are 97.76% for all tokens and 93.42% for
unknown tokens.

6 Related Work

There is some old work on the POS tagging by
neural networks. Nakamura et al. (1990) proposed
a neural tagger that predicts the POS tag using a
previous POS predictions. Schmid (1994) is most
similar to our work. The inputs of his neural net-
work are the POS tag distributions of a word and
its suffix in a context window, and he reports a
2% improvement over a regular hidden Markov
model. However, his tagger did not use the other
kinds of corpus-wide information as we used.

Most of the recent studies on POS tagging use
linear models (Suzuki and Isozaki, 2008; Spous-
tová et al., 2009) or other non-linear models, such
as k-nearest neighbor (kNN) (Søgaard, 2011).
One trend in these studies is model combinations.
Suzuki and Isozaki (2008) combined generative
and discriminative models, Spoustová et al. (2009)
used the combination of three taggers to gener-
ate automatically annotated corpus, and Søgaard
(2011) used the outputs of a supervised tagger and
an unsupervised tagger as the feature space of the
kNN. Our work also follows this trend since neural
networks can be considered as non-linear integra-
tion of several linear classifiers.

Apart from POS tagging, some previous studies
in parsing used the discretization method to handle
the combination of continuous features. Bohnet
and Nivre (2012) binned the difference of two con-



tinuous features in discrete steps of a predefined
small interval. Bansal et al. (2014) used the con-
junction of discretized features and studied two
discretization methods: One is the binning of real
values into discrete steps and the other is a hard
clustering of continuous feature vectors. It is not
easy to determine the optimal intervals for the bin-
ning method, and the clustering method is unsu-
pervised so that the clusters are not guaranteed for
good representations of the target tasks.

To capture rich syntactic information for Chi-
nese POS tagging, Sun and Uszkoreit (2012) used
the ensemble model of both a POS tagger and a
constituency parser. Sun et al. (2013) improved
the efficiency of Sun and Uszkoreit (2012) in
which a single tagging model is trained using au-
tomatically annotated corpus generated by the en-
semble tagger. Although the supertag distribution
feature in Section 3.3 is a simple way to incor-
porate syntactic information, automatically parsed
large corpora may make the estimate of the su-
pertag distributions more accurate.

7 Conclusion and Future Work

We are studying a neural network approach to han-
dle the non-linear interaction among corpus-wide
statistics. For POS tagging, we used word em-
beddings, POS tag distributions, supertag distribu-
tions, and context word distributions in a context
window. These features are beneficial, even for
linear classifiers, but the neural networks leverage
these features for improving tagging accuracies.
Our tagger with Maxout networks (Goodfellow et
al., 2013) or Lp-pooling (Zhang et al., 2014; Gul-
cehre et al., 2014) show the state-of-the-art results
on two English benchmark sets.

Our empirical results suggest further opportu-
nities to investigate continuous features not only
for POS tagging but also for other NLP tasks.
An obvious use case for continuous features is
the N-best outputs with confidence values, which
were predicted by the previous process in a NLP
pipeline, such as the POS tags used for syntactic
parsing. Another interesting extension is the use of
on-the-fly features which reflect previous network
states, although the neural networks in our current
work do not refer to the prediction history. Recur-
rent neural networks (RNNs) may be a solution to
represent the prediction history in a compact way,
and Mesnil et al. (2013) reported that RNNs out-
perform conditional random fields (CRFs) on a se-

quential labeling task. They also show the superi-
ority of bi-directional RNNs on their task, so the
bi-directional RNNs may also be effective on the
POS tagging, since bi-directional inferences were
also used in earlier work (Tsuruoka and Tsujii,
2005).

It has a clear benefit over kernel methods in
that the test-time computational cost of neural net-
works is independent from training data. How-
ever, although the test-time speed of original ker-
nel methods is proportional to the number of train-
ing data, recent development of kernel approxima-
tion techniques achieve significant speed improve-
ments (Le et al., 2013; Pham and Pagh, 2013).
Since this work shows the non-linearity of contin-
uous features should be exploited, those approxi-
mated kernel methods may also improve the tag-
ging accuracies without sacrifice tagging speed.

Independent from our work, Ma et al. (2014)
and Santos and Zadrozny (2014) also recently pro-
posed neural network approaches for POS tagging.
Ma et al. (2014)’s approach is similar to our ap-
proach, with a combination of a linear model and
a neural network, although a direct comparison is
not easy since their focus is the Web domain adap-
tation of POS tagging. Remarkably, they report n-
gram embeddings are better than single word em-
beddings. Santos and Zadrozny (2014) proposed
character-level embedding to capture the morpho-
logical and shape information for POS tagging.
Although the reported accuracy (97.32%) on PTB
data is lower than state of the art results, their ap-
proach is promising for morphologically rich lan-
guages. We may study the integration of these em-
beddings into our approach as future work.
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Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. Machine
Learning Journal, 75(3):297–325, June.

John C. Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive subgradient methods for online learning
and stochastic optimization. In Proceedings of
the Conference on Learning Theory (COLT), pages
257–269.
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