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Abstract

= Problem: Covariate shift is a situation in supervised learning where
training and test inputs follow different distributions even though the
functional relation remains unchanged. A common approach to
compensating for the bias caused by covariate shift is to reweight
the loss function according to the importance, which is the ratio of
test and training densities.

= Contributions:

— LL-KLIEP: KLIEP (Sugiyama, et. al. 2007) for Log-linear models
» Natural modeling for density ratio functions
— LL-KLIEP(LS): Another optimization technique for LL-KLIEP

 the computation time is nearly independent of the number of test
input samples, and

- the memory requirement is independent of the number of test
input samples

+ which is beneficial in applications with large numbers of
unlabeled samples.
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Covariate shift situation
Training and test inputs x follow different distributions

* Input distribution changes: Dirain (X) Z P (X)

= Functional relation remains unchanged:
ptrain (y | X) - ptest (y | X)

Classification
under

>

Covariate
Shift

ptram (X) < ptest (X)
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Examples of covariate shift situation
Domain Adaptation & Selective Sampling (Active Learning)

= Domain adaptation of statistical classifiers

— The data distribution in the test domain is different from that in the
training domain. (Note: the functional relation can also be changed)

- E.g.: Spam filters can be trained on public collections of spam, but are
applied to an individual person's inbox. (Personalization)

La{: < c :>{ ???7????J

Domain A (train) Domain B (test)
= Selective sampling (active learning) of statistical classifiers

— The learning algorithm can actively query the teacher for labels.

— Since the learner chooses

the examples by design, Selecting & Labeling samples

the data distribution of O N B P
the labeled training examples is w, ST TP 9, .
different from that of a sample pool. | ain | " test ?
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A common approach for covariate shift situation
Weighting the training examples by importance.

= Density ratio (importance): W(X)— ptest(X)

ptrain (X)
= Example: Importance Weighted Logistic Regression (IWLR)
- Weighted Log-likelihood for Logistic Regression (LR)

[ [Pl yIX)pe(y%)dxdy  Labted aining s
LR model e % <1

[Pt 2 ((’;))p(y Jlogpa(y %) dsd

(Xay)eztrain /\
N Density ratio

Training data (Importance) Log-likelihood
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We need to estimate the density ratio from samples.
Importance Estimation

= Problem setting: i.i.d. training and test samples are
given

Training inputs: /), {xl.}l].iti from Ptrain(X)

Testinputs: /), Z{x.}].itle from P (X)

1) test

= Naive approach: estimate Prn(¥)and Pe.(X) separately,
and take the ratio of the density estimates

= However, density P(x) estimation is the hard problem
particularly in high dimensional cases.
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Modeling Density Ratio by Log-linear Model

= We use a log-linear model:

o) = el (@) parame
_ﬁszemre}{p((a’?’b(m!))) ¥ (x) : basis function

@ : model parameter

= Log-linear model
— W(x) takes only non-negative values.
- natural modeling for ratio (@ and ¥ (x) can be an arbitrary value)

= Test d . . . ’ es X
tl} :Blt —I > t y ..................................................... ptest (X) — ptrain %(zl
i Ate ( ) ptr ( m ) .lE} ( m) I P —

&

= Learn o sothat p __(x) approximates ptest(x) well.

—> The denominator guarantees f?test (X) be a probability density function

1 _
1 —/ Pre(@)dx —/ pic(®)(2)dx ~ w(x)
D ‘ D t N Z Z Training data set
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Kullback—Leibler (KL) Divergence

= Minimize KL divergence between p (x) and p,_, (x) :

arg minKL[ptest (X) ‘ ‘ IS test (X )]

KL[p e (%) | et ()]

p test (X) dX

=[P lxltoe -6

Bres (%) = Py (x)i(x)

X _

= j P...(x)log pteSt((X))dx j P (X)log W(x)dx
" tram =

—~
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Learning Importance Function

= Thus,
arg minKL[ptest (X) ” Is test (X)]

< arg max_“ptest (x)log w(x)dx _

= Empirical approximation of objective function (LL-KLIEP)

JiL—krLiep(
mEDte

Test data set

_I\i Z( () —log— Ze}{p 2)))

= T ecD:: J 11 xuEp

A

= Unconstraint convex optimization:

— standard gradient ascent method can be used.

— unique global solution is available.
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Kullback-Leibler Importance Estimation Procedure
(KLIEP) for Log-linear Models: LL-KLIEP

= Regularized version of LL-KLIEP

1
j(ex) = > (e 9(@)
Le ccDie
| 2
— log W mEZD exp({a, ¥(x))) — H;_::,lz[
tr ﬁ regularizer
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Samples were generated from two Gaussian distributions.
We used 100 Gaussian basis functions (Gaussian kernels)
centered at randomly chosen test input samples.

b — exp({ca, P(x))) \ :
1 Zm reD,. €Xp({a, Y(x'))) 2s
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Model selection of KLIEP/LL-KLIEP
Likelihood Cross Validation (LCV)

= The performance of KLIEP depends on the choice of the basis functionsw(x)

- How to choose hyper parameters, e.g., the kernel width s for Gaussian

kernels:

However, the correct value 6
unknown distributions P iuin

Ks(ms ':Ef) = exXp {

X

Ml — |

952

|

f importance for each x is not available for

—> unsupervised learning setting

= LCV: Select the model such that maximized J(ﬂf)

1. Divide test samples into R disjoint subsets: { D7} 2,

) and Pt (X)

2. Learn importance: " () from { D},

3. Evaluate a model by likelihood: |
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L4

distributions
= We used Importance Weighted Logistic
Regression (IWLR)

Classification example under Covariate shift
2-dimensional samples were generated from Gaussian

Training pe (2, y)
y=0 y=1

Test pie(x,y)

“ Test{class 1)

Trammingfclass 0}
Trainingiclass 1) N
Testiclass 0)

=

(L) (3

025 0
0 4

(a) pie(ae) 1s linearly shifted from py (2).
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Classification example under Covariate shift
2-dimensional samples were generated from Gaussian

distributions
= We used Importance Weighted  #

(-1,0) (4,2) (0,2) (3,1)

Logistic Regression (IWLR). > (0-75 0 ) (8’8? g?)

0 1.5

Training(class 0) !
Training(class 1) ! . -
Test{clazs 07 >

- | | # Testiclass 1)

oome

(b) pte(z) is rotated from py,(x).
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_ ptest(x)
Related Work of Density Ratio Estimation wlx)= P (X)

= Kernel density estimator (KDE)
— Separately estimate training and test input densities.
— Gaussian kernel width is chosen by likelihood cross-validation.

= Kernel Mean Matching (KMM) (Huang et al., NIPS2006)

— Direct importance estimation method in universal reproducing kernel
Hilbert spaces (RKHS)

— There is no model selection method for kernel width.

= Logistic regression (LogReg) (Beckel et al., ICML2007)
— Classifier discriminating training and test input data.
— Gaussian kernel width is chosen by likelihood cross-validation.

= Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama
et al., NIPS2007)

— Direct importance estimation method using KL Divergence.
— Gaussian kernel width is chosen by likelihood cross-validation.
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Experiments per(x) = N(04,13)
varying input dimension pre(x) = N((1,0,...,0)7,0.75%1,)

2 LL-KLIEP
= RLIEP
A KDE
— KMM(0.1)

KMM(1.0)
- LogReg -

& NMSE:
' Normalized Mean Squared Error

2
) - NMSE = . |
e Ngr mEZDu( Em’EDtr ’w(;t:") ZE’ED“ 'I.U(.'I!")

Mean NMSE
0.00000  0.00024  0.00048 000072  0.00096  0.00120

& - @
Lo =% = ¥
e ’:_.-v e BT . 5
=T R s g B s n B BT RETEE KDE: Suffers from the curse of
dimensionality

2 — O3
1

4 6 8 10 12 14 16 18 20 KMM: Performance depends on
Input Dimension kernel width

KLIEP, LogReg, and LL-KLIEP: Model selection by LCV works well
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Disadvantage: LL-KLIEP and previous methods require to use
all test inputs in their optimization procedure.

= We need to iterate over all test inputs when computing the values
of the objective function:

1
j(&) = N, XDJ (CL Tf’("ﬂ)) = ﬁ Evaluation over Test data set
rcllie
2
gy 1 |||

SN, Z exp({a, ¥ (x))) — 92

D - . ..
xc Dy ﬁ Evaluation over Training data set

= However, the derivative of the objective function requires the
evaluation of all test samples once.

J)(cx L™ -
1) P ¥ i) - 5
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An optimization technique w/o the objective function evaluation

LL-KLIEP(LS1)

= |dea: the derivative of the convex objective function to be zero
at the optimum point.
- Minimizing a squared norm to measure the ‘magnitude’ of
the derivative: : 2
1 || 9s(ex)

(Objective function for EEKLIER(EST)] /s(>) = 5 | =5

= The partial derivative of LL-KLIEP(LS1):

dys(a)  0%)(a) Oy(ex)
oo Pa Jda

= Computation time & memory size are independent of N,...

— However, the derivative is a quadratic function of the
number of parameters, which could be a bottleneck in high
dimensional problems.
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LL-KLIEP(LS) for the high-dimensional data
LL-KLIEP(LS2)

= |dea: representing the parameter a as a linear combination of
the training inputs (representer theorem (Wahba 1990)):

where {5;}zcp, Isa data-wise parameter.

O
F— 3 (@) — 3 "[’(m;f

xrc Dy, xr= Dy a

2

o 1
Js(1 Pz tzen,) = 5
where . |
. EKI}(Z:::’ED“ K(z. ') e )
EJ‘:”EDU Exl}(zm:EDtr I‘:(ﬂ:’”, Sﬂ'r).lﬁmf } )
K(z.a') = ((z), ¥ ().
— Now, the computation time is linear w.r.t. the number of parameters
(quadratic w.r.t. the number of the training inputs).

w(z)
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LL-KLIEP (LS): No iteration and no storage for N, in
optimization - Well-suited to the applications with the large
amount of test samples

Computational complexity and space requirements. Ny, is the num-
ber of training samples. N is the number of test samples, b is the

munber of parameters. and ¢ is the average munber of non-zero basis

entries.
Computational complexity Space requirement
Pre. Comp. (once) | Objective | Derivative | Objective | Derivative
KLIEP 0 BN, +bBN,. | BN +bBN,, | eNy,+eN | eN+eN,.
LI-KLIEP bNie BN +BN,, bV iy N+ N e eNir
LI-KLIEP(LS1) BN, BN, b2 N, N, b? +eNy,
LL-KLIEP(LS2) bNia bNZ BNZ Ny NZ 4eNy;

= LL-KLIEP (LS1) : For lower-dimensional and large-scale training
data.

= LL-KLIEP (LS2): For higher-dimensional and moderate-size training
data.
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Average computation time (including Pre-comp.) over 100 trials
We varied the number of test inputs, and fixed the number of training inputs.

= we used linear basis function so that the number of bases is equivalent to
the input dimension.

> d: input dimension = #parameter,
N,.: The number of training inputs, N,.: The number of test inputs

4. LL-KLIEP
- LL-KLIEP(LSI)

—%— LL- KLIEP(LS2)

1o
|

- *|  The computation time
£ of LL-KLIEP(LS) is
£ " . . independent from the
B, L A e number of test inputs.
ulF 1:)3 nlzr’ 1»!}5 1[|:ti
Number of Test Samples

(a) d =10, N¢r = 100
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Average computation time (including Pre-comp.) over 100 trials
We varied the number of test inputs, and fixed the number of training inputs.

= d: input dimension = #parameter,
N,: The number of training inputs, N,.: The number of test inputs

+
+
& 1L-KLIEP i ¥ &
-+- LL-KLIEP(LS1)
% —— LL-ELIEP(LS2) =
a— a - . o
é b 4 o
¥} x
TE T Ex——_x"ﬁ -2 =
'g. +- +
s o
= F.3
= A o
= A = < LL-ELIEP
-+- LL-ELIEP{LSI)
—— LL-ELIEP(LSI)
ES L

I I I I I T T T I I
10 10° 10° 10° 10° 10° 16" 10 10° 10

Number of Test Samples

(b) d — 1003 Nt'r‘ = 10[} {ﬂ} d: 1[“]{}., -M‘Lr == 1["]
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Related work: Kernel Mean Matching (KMM)
LL-KLIEP (LS2) without a regularizer has the same form as

the objective function of KMM.

1

min — Y w(@)w(@ Kz, 2')— ) w(@)k(z)

{w(m}}meﬂtr < 3 2'cDyr =

subject to Z w(xe) — Nip| < Nie, and

:I:E.Dt.r
0 <w(xe) < B for all x € Dy,.

where

Nir )
= Z Ixs(_:ﬂ‘_m’).

tlE) =
( *"?Vte 2'cDi.

= The objective function of LL-KLIEP (LS2):

LS| —

x,x' €Dy xc Dy
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Disadvantage of KMM.
The estimates of w(x) are

only available for training
samples—> Cannot optimize
hyper parameters by CV

Y w(@)w(d) Kz, z') — ) w(z)k(z),
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Related work: Logistic regression (LogReg)
Classifier discriminating training and test input data

= Selector variable J = -1 to the training input samples and J = 1 to the
test input samples:

pur(@) = p(x|0 = —1), pre(x) = p(x|d =1)

p(6=—-1) p(6=1z)
p6=1) p(0= 1z’

The conditional probability p( d jx) may be learned by discriminating
between the test input samples and the training input samples using LR,
where O plays the role of a class variable.

Importance can be

w(zx) =

ﬁ Empirical estimation
Objective function: regularized maximum likelihood estimation

Disadvantage: summation over both training and test samples in CV.
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