

Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation

Yuta Tsuboi (*), Hisashi Kashima, Shohei Hido,

IBM Research, Tokyo Research Laboratory

* Nara Institute of Science and Technology

Steffen Bickel,

Max Planck Institute for Computer Science

Masashi Sugiyama

Tokyo Institute of Technology, Department of Computer Science

Abstract

Problem: Covariate shift is a situation in supervised learning where training and test inputs follow different distributions even though the functional relation remains unchanged. A common approach to compensating for the bias caused by covariate shift is to reweight the loss function according to the *importance*, which is the ratio of test and training densities.

Contributions:

- LL-KLIEP: KLIEP (Sugiyama, et. al. 2007) for Log-linear models
 - Natural modeling for density ratio functions
- LL-KLIEP(LS): Another optimization technique for LL-KLIEP
 - the <u>computation time</u> is nearly independent of the number of test input samples, and
 - the <u>memory requirement</u> is independent of the number of test input samples
 - which is beneficial in <u>applications with large numbers of</u> unlabeled samples.

Covariate shift situation

Training and test *inputs* x follow different distributions

Input distribution changes:

$$p_{train}(\mathbf{x}) \neq p_{test}(\mathbf{x})$$

Functional relation remains unchanged:

$$p_{train}(y \mid \mathbf{x}) = p_{test}(y \mid \mathbf{x})$$

Classification under Covariate Shift

Examples of covariate shift situation Domain Adaptation & Selective Sampling (Active Learning)

Domain adaptation of statistical classifiers

- The data distribution in the test domain is different from that in the training domain. (Note: the functional relation can also be changed)
 - E.g.: Spam filters can be trained on public collections of spam, but are applied to an individual person's inbox. (Personalization)

Selective sampling (active learning) of statistical classifiers

- The learning algorithm can actively query the teacher for labels.
- Since the learner chooses the examples by design, the data distribution of the labeled training examples is different from that of a sample pool.

A common approach for covariate shift situation Weighting the training examples by importance.

- Density ratio (importance): $w(\mathbf{x}) = \frac{\mathbf{p}_{\text{test}}(\mathbf{x})}{\mathbf{p}_{\text{train}}(\mathbf{x})}$
- Example: Importance Weighted Logistic Regression (IWLR)
 - Weighted Log-likelihood for Logistic Regression (LR)

We need to estimate the density ratio from samples. **Importance Estimation**

Problem setting: i.i.d. training and test samples are given

Training inputs:
$$D_{tr} = \{x_i\}_{i=1}^{N_{tr}}$$
 from $P_{train}(\mathbf{x})$

Test inputs:
$$D_{\text{te}} = \{x_i\}_{i=1}^{N_{\text{te}}} \text{ from } P_{\text{test}}(\mathbf{x})$$

- Naïve approach: estimate $P_{train}(\mathbf{x})$ and $P_{test}(\mathbf{x})$ separately, and take the ratio of the density estimates
- However, density P(x) estimation is the hard problem particularly in high dimensional cases.

Modeling Density Ratio by Log-linear Model

We use a log-linear model:

$$\hat{w}(\boldsymbol{x}) = \frac{\exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle)}{\frac{1}{N_{tr}} \sum_{\boldsymbol{x}' \in D_{tr}} \exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}') \rangle)} \qquad \boldsymbol{\psi}(\boldsymbol{x}) \text{ : basis function}$$

 α : model parameter

- Log-linear model
 - $\hat{w}(\mathbf{x})$ takes only non-negative values.
 - \rightarrow natural modeling for ratio (α and $\psi(\mathbf{x})$ can be an arbitrary value)
- **Test density** is approximated by

$$p_{test}(\mathbf{x}) = p_{train}(\mathbf{x}) \frac{p_{test}(\mathbf{x})}{p_{train}(\mathbf{x})}$$

- $\hat{p}_{te}(\boldsymbol{x}) = p_{tr}(\boldsymbol{x})\hat{w}(\boldsymbol{x}). \blacktriangleleft$
- Learn lpha so that $\hat{p}_{test}(\mathbf{x})$ approximates $p_{test}(\mathbf{x})$ well.
- ightarrow The denominator guarantees $\hat{p}_{\textit{test}}(\mathbf{x})$ be a probability density function

$$1 = \int_D \hat{p}_{\mathrm{te}}(\boldsymbol{x}) d\boldsymbol{x} = \int_D p_{\mathrm{tr}}(\boldsymbol{x}) \hat{w}(\boldsymbol{x}) d\boldsymbol{x} \approx \frac{1}{N_{\mathrm{tr}}} \sum_{\boldsymbol{x} \in D_{\mathrm{tr}}} \hat{w}(\boldsymbol{x})$$
 Training data set

Kullback—Leibler (KL) Divergence

Minimize KL divergence between $p_{test}(\mathbf{x})$ and $\hat{p}_{test}(\mathbf{x})$:

$$\underset{\alpha}{\operatorname{arg\,minKL}} [p_{\text{test}}(\mathbf{x}) || \, \hat{p}_{\text{test}}(\mathbf{x})]$$

$$\hat{p}_{\text{test}}(\mathbf{x}) = p_{\text{train}}(\mathbf{x}) \hat{w}(\mathbf{x})$$

$$KL[p_{test}(\mathbf{x}) \| \, \hat{p}_{test}(\mathbf{x})]$$

$$= \int p_{test}(\mathbf{x}) \log \frac{p_{test}(\mathbf{x})}{\hat{p}_{train}(\mathbf{x}) \hat{w}(\mathbf{x})} d\mathbf{x}$$

$$= \int p_{\text{test}}(\mathbf{x}) \log \frac{p_{\text{test}}(\mathbf{x})}{p_{\text{train}}(\mathbf{x})} d\mathbf{x} - \int p_{\text{test}}(\mathbf{x}) \log \hat{w}(\mathbf{x}) d\mathbf{x}$$

constant

relevant

Learning Importance Function

Thus,

$$\underset{\alpha}{\arg\min} \text{KL}[p_{\text{test}}(\mathbf{x}) \| \hat{p}_{\text{test}}(\mathbf{x})]$$

$$\Leftrightarrow \underset{\alpha}{\arg\max} \int p_{\text{test}}(\mathbf{x}) \log \hat{w}(\mathbf{x}) d\mathbf{x} \quad \text{Objective function}$$

Empirical approximation of objective function (*LL-KLIEP*)

Empirical approximation of objective function (
$$LL$$
 $J_{LL-KLIEP}(\alpha) = \frac{1}{N_{te}} \sum_{m{x} \in D_{te}} \log \hat{w}(m{x})$ Test data set

$$= \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle - \log \frac{1}{N_{tr}} \sum_{\boldsymbol{x} \in D_{tr}} \exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle) J_{\textit{LL-KLIEP}}$$

- Unconstraint convex optimization:
 - standard gradient ascent method can be used.
 - unique global solution is available.

Kullback-Leibler Importance Estimation Procedure (KLIEP) for Log-linear Models: LL-KLIEP

Regularized version of LL-KLIEP

$$\begin{split} \jmath(\alpha) &= \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \langle \alpha, \boldsymbol{\psi}(\boldsymbol{x}) \rangle \\ &- \log \frac{1}{N_{tr}} \sum_{\boldsymbol{x} \in D_{tr}} \exp(\langle \alpha, \boldsymbol{\psi}(\boldsymbol{x}) \rangle) - \frac{||\alpha||^2}{2\sigma^2} \end{split}$$
 regularizer

Gradient of the objective function

$$\frac{\partial \jmath(\alpha)}{\partial \alpha} = \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \psi(\boldsymbol{x})$$

$$- \sum_{\boldsymbol{x} \in D_{tr}} \frac{\exp(\langle \alpha, \psi(\boldsymbol{x}) \rangle)}{\sum_{\boldsymbol{x}' \in D_{te}} \exp(\langle \alpha, \psi(\boldsymbol{x}') \rangle)} \psi(\boldsymbol{x}) - \frac{\alpha}{\sigma^2}$$

Samples were generated from two Gaussian distributions. We used 100 Gaussian basis functions (Gaussian kernels) centered at randomly chosen test input samples.

$$\hat{w}(\boldsymbol{x}) = \frac{\exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle)}{\frac{1}{N_{tr}} \sum_{\boldsymbol{x}' \in D_{tr}} \exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}') \rangle)} \quad \psi_l(\mathbf{x}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_l^{\text{test}}\|^2}{2s^2}\right)$$

Training and Test Densities

X

Estimated Importance

Model selection of KLIEP/LL-KLIEP **Likelihood Cross Validation (LCV)**

- The performance of KLIEP depends on the choice of the basis functions $\psi(x)$
 - → How to choose hyper parameters, e.g., the kernel width s for Gaussian kernels:

 $K_s(x, x_l) = \exp\left\{-\frac{\|x - x_l\|^2}{2s^2}\right\},$

- However, the correct value of importance for each **x** is not available for unknown distributions $p_{train}(\mathbf{x})$ and $p_{test}(\mathbf{x})$
 - → unsupervised learning setting
- LCV: Select the model such that maximized $\mathcal{I}(\alpha)$
 - 1. Divide test samples into R disjoint subsets: $\{D_{te}^r\}_{r=1}^R$
 - 2. Learn importance: $\hat{w}^r(x)$ from $\{D_{te}^t\}_{t\neq r}^R$
 - 3. Evaluate a model by likelihood:

Classification example under Covariate shift 2-dimensional samples were generated from Gaussian distributions

 We used Importance Weighted Logistic Regression (IWLR)

	Training $p_{\rm tr}(\boldsymbol{x},y)$		Test $p_{\text{te}}(\boldsymbol{x}, y)$		
	y = 0	y = 1	y = 0	y = 1	
μ	(-1,-1)	(3,-1)	(0,3.5)	(4,2.5)	
Σ	$\begin{pmatrix} 0.25 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 0.25 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.25 \end{pmatrix}$	

Correct classification rate of LR is 99.1% while that of IWLR is 100%.

Classification example under Covariate shift 2-dimensional samples were generated from Gaussian distributions

We used Importance Weighted Logistic Regression (IWLR).

$$\begin{array}{c|ccc}
\mu & (-1,0) & (4,2) \\
\Sigma & \begin{pmatrix} 0.75 & 0 \\ 0 & 1.5 \end{pmatrix}
\end{array}$$

$$\begin{pmatrix} 0.2 \end{pmatrix} & (3,1) \\ \begin{pmatrix} 0.75 & 0.5 \\ 0.01 & 0.1 \end{pmatrix}$$

Correct classification rate of LR is 97.2% while that of IWLR is **99.1%.**

Related Work of Density Ratio Estimation

$$w(\mathbf{x}) = \frac{\mathbf{p}_{\text{test}}(\mathbf{x})}{\mathbf{p}_{\text{train}}(\mathbf{x})}$$

- Kernel density estimator (KDE)
 - Separately estimate training and test input densities.
 - Gaussian kernel width is chosen by likelihood cross-validation.
- **Kernel Mean Matching (KMM)** (Huang *et al.*, NIPS2006)
 - Direct importance estimation method in universal reproducing kernel Hilbert spaces (RKHS)
 - There is no model selection method for kernel width.
- **Logistic regression (LogReg)** (Beckel *et al.*, ICML2007)
 - Classifier discriminating training and test input data.
 - Gaussian kernel width is chosen by likelihood cross-validation.
- Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama et al., NIPS2007)
 - Direct importance estimation method using KL Divergence.
 - Gaussian kernel width is chosen by likelihood cross-validation.

Experiments varying input dimension

$$p_{\text{tr}}(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{0}_d, \boldsymbol{I}_d)$$

$$p_{\text{te}}(\boldsymbol{x}) = \mathcal{N}((1, 0, \dots, 0)^{\top}, 0.75^2 \boldsymbol{I}_d)$$

Mean NMSE over 100 trials.

KMM (s) denotes KMM with kernel width s

NMSE:

Normalized Mean Squared Error

$$\text{NMSE} = \frac{1}{N_{\text{tr}}} \sum_{\boldsymbol{x} \in D_{\text{tr}}} \left(\frac{\hat{w}(\boldsymbol{x})}{\sum_{\boldsymbol{x}' \in D_{\text{tr}}} \hat{w}(\boldsymbol{x}')} - \frac{w(\boldsymbol{x})}{\sum_{\boldsymbol{x}' \in D_{\text{tr}}} w(\boldsymbol{x}')} \right)^{2}.$$

KDE: Suffers from the curse of dimensionality

KMM: Performance depends on kernel width

KLIEP, LogReg, and LL-KLIEP: Model selection by LCV works well

Disadvantage: LL-KLIEP and previous methods require to use all test inputs in their optimization procedure.

We need to iterate over all test inputs when computing the values of the objective function:

$$\begin{split} \jmath(\alpha) &= \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \langle \alpha, \boldsymbol{\psi}(\boldsymbol{x}) \rangle & \quad \text{Evaluation over Test data set} \\ &- \log \frac{1}{N_{tr}} \sum_{\boldsymbol{x} \in D_{tr}} \exp(\langle \alpha, \boldsymbol{\psi}(\boldsymbol{x}) \rangle) - \frac{||\alpha||^2}{2\sigma^2} \\ & \quad \text{Evaluation over Training data set} \end{split}$$

 However, the derivative of the objective function requires the evaluation of all test samples once.

$$\frac{\partial \jmath(\alpha)}{\partial \alpha} = F - \frac{1}{N_{\rm tr}} \sum_{\boldsymbol{x} \in D_{\rm tr}} \hat{w}(\boldsymbol{x}) \psi(\boldsymbol{x}) - \frac{\alpha}{\sigma^2}$$

$$F = \frac{1}{N_{\rm te}} \sum_{\boldsymbol{x} \in D_{\rm te}} \psi(\boldsymbol{x}) \text{: Independent from } \alpha \text{ } \Rightarrow \text{Pre-computing the value}$$

An optimization technique w/o the objective function evaluation **LL-KLIEP(LS1)**

- Idea: the derivative of the convex objective function to be zero at the optimum point.
 - → Minimizing a squared norm to measure the 'magnitude' of the derivative:

Objective function for LL-KLIEP(LS1)
$$\jmath_{\rm LS}(\alpha) = \frac{1}{2} \left\| \frac{\partial \jmath(\alpha)}{\partial \alpha} \right\|^2$$
.

The partial derivative of LL-KLIEP(LS1):

$$\frac{\partial \jmath_{\mathrm{LS}}(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} = \frac{\partial^2 \jmath(\boldsymbol{\alpha})}{\partial^2 \boldsymbol{\alpha}} \frac{\partial \jmath(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}}.$$

- Computation time & memory size are independent of N_{te}.
 - However, the derivative is a quadratic function of the number of parameters, which could be a bottleneck in high dimensional problems.

LL-KLIEP(LS) for the high-dimensional data LL-KLIEP(LS2)

• Idea: representing the parameter α as a linear combination of the training inputs (representer theorem (Wahba 1990)):

$$\alpha = \sum_{oldsymbol{x} \in D_{ ext{tr}}} oldsymbol{\psi}(oldsymbol{x}) eta_{oldsymbol{x}}$$

where $\{\beta_{\boldsymbol{x}}\}_{\boldsymbol{x}\in D_{\mathrm{tr}}}$ is a data-wise parameter.

Objective function for LL-KLIEP(LS2)

$$j_{\text{LS}}(\{\beta_{\boldsymbol{x}}\}_{\boldsymbol{x}\in D_{\text{tr}}}) = \frac{1}{2} \left\| F - \sum_{\boldsymbol{x}\in D_{\text{tr}}} \psi(\boldsymbol{x})\omega(\boldsymbol{x}) - \sum_{\boldsymbol{x}\in D_{\text{tr}}} \frac{\psi(\boldsymbol{x})\beta_{\boldsymbol{x}}}{\sigma^2} \right\|^2$$

where

$$\omega(\boldsymbol{x}) = \frac{\exp(\sum_{\boldsymbol{x}' \in D_{tr}} K(\boldsymbol{x}, \boldsymbol{x}') \beta_{\boldsymbol{x}'})}{\sum_{\boldsymbol{x}'' \in D_{tr}} \exp(\sum_{\boldsymbol{x}' \in D_{tr}} K(\boldsymbol{x}'', \boldsymbol{x}') \beta_{\boldsymbol{x}'})},$$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \langle \psi(\boldsymbol{x}), \psi(\boldsymbol{x}') \rangle.$$

 Now, the computation time is linear w.r.t. the number of parameters (quadratic w.r.t. the number of the training inputs).

LL-KLIEP (LS): No iteration and no storage for N_{te} in optimization -> Well-suited to the applications with the large amount of test samples

Computational complexity and space requirements. $N_{\rm tr}$ is the number of training samples, N_{te} is the number of test samples, b is the number of parameters, and c is the average number of non-zero basis entries.

	Computational complexity			Space requirement	
,	Pre. Comp. (once)	Objective	Derivative	Objective	Derivative
KLIEP	0	$bN_{\mathrm{tr}} + bN_{\mathrm{te}}$	$bN_{ m tr} + bN_{ m te}$	$cN_{\mathrm{tr}} + cN_{\mathrm{te}}$	$cN_{\mathrm{tr}} + cN_{\mathrm{te}}$
LL-KLIEP	$bN_{ m te}$	$bN_{\mathrm{tr}} + bN_{\mathrm{te}}$	$bN_{ m tr}$	$cN_{\mathrm{tr}}\!+\!cN_{\mathrm{te}}$	$cN_{ m tr}$
LL-KLIEP(LS1)	$bN_{ m te}$	$bN_{ m tr}$	$b^2 N_{ m tr}$	$cN_{ m tr}$	$b^2\!+\!cN_{ m tr}$
LL-KLIEP(LS2)	$bN_{ m te}$	$bN_{ m tr}^2$	$bN_{ m tr}^2$	$cN_{ m tr}$	$N_{ m tr}^2 + c N_{ m tr}$

- LL-KLIEP (LS1): For lower-dimensional and large-scale training data.
- LL-KLIEP (LS2): For <u>higher-dimensional</u> and moderate-size training data.

Average computation time (including Pre-comp.) over 100 trials We varied the number of test inputs, and fixed the number of training inputs.

- we used linear basis function so that the number of bases is equivalent to the input dimension.
 - > d: input dimension = #parameter, N_{tr}: The number of training inputs, N_{te}: The number of test inputs

Lower-dimensional data

The computation time of LL-KLIEP(LS) is independent from the number of test inputs.

(a)
$$d = 10, N_{tr} = 100$$

Average computation time (including Pre-comp.) over 100 trials We varied the number of test inputs, and fixed the number of training inputs.

d: input dimension = #parameter,
 N_{tr}: The number of training inputs, N_{te}: The number of test inputs

Moderate-dimensional data

Higher-dimensional data

(b)
$$d = 100, N_{tr} = 100$$

(c)
$$d = 1000, N_{tr} = 100$$

Related work: Kernel Mean Matching (KMM) LL-KLIEP (LS2) without a regularizer has the same form as the objective function of KMM.

Moment matching method:

nent matching method: Objective function for KMM
$$\min_{\{w(\boldsymbol{x})\}_{\boldsymbol{x}\in D_{\mathrm{tr}}}} \left[\frac{1}{2}\sum_{\boldsymbol{x},\boldsymbol{x}'\in D_{\mathrm{tr}}} w(\boldsymbol{x})w(\boldsymbol{x}')K_s(\boldsymbol{x},\boldsymbol{x}') - \sum_{\boldsymbol{x}\in D_{\mathrm{tr}}} w(\boldsymbol{x})\kappa(\boldsymbol{x})\right]$$
 subject to
$$\left|\sum_{\boldsymbol{x}\in D_{\mathrm{tr}}} w(\boldsymbol{x}) - N_{\mathrm{tr}}\right| \leq N_{\mathrm{tr}}\epsilon, \text{ and }$$

$$0 \leq w(\boldsymbol{x}) \leq B \text{ for all } \boldsymbol{x}\in D_{\mathrm{tr}},$$

where

$$\kappa(\boldsymbol{x}) = \frac{N_{\mathrm{tr}}}{N_{\mathrm{te}}} \sum_{\boldsymbol{x}' \in D_{\mathrm{te}}} K_s(\boldsymbol{x}, \boldsymbol{x}').$$
 The estimates of w(x) are only available for training

The objective function of LL-KLIEP (LS2):

Disadvantage of KMM.

samples → Cannot optimize hyper parameters by CV

$$\frac{1}{2} \sum_{\boldsymbol{x}, \boldsymbol{x}' \in D_{tr}} w(\boldsymbol{x}) w(\boldsymbol{x}') K_s(\boldsymbol{x}, \boldsymbol{x}') - \sum_{\boldsymbol{x} \in D_{tr}} w(\boldsymbol{x}) \kappa(\boldsymbol{x}),$$

Related work: Logistic regression (LogReg) Classifier discriminating training and test input data

• Selector variable δ = -1 to the training input samples and δ = 1 to the test input samples:

$$p_{\rm tr}(x) = p(x|\delta = -1), \quad p_{\rm te}(x) = p(x|\delta = 1)$$

- Importance can be $w(x) = \frac{p(\delta = -1)}{p(\delta = 1)} \frac{p(\delta = 1|x)}{p(\delta = -1|x)}.$
- The conditional probability $p(\delta jx)$ may be learned by discriminating between the test input samples and the training input samples using LR, where δ plays the role of a class variable.

$$\hat{w}(x) = rac{N_{\mathrm{tr}}}{N_{\mathrm{te}}} rac{\exp(\langle m{lpha}, m{\psi}(x)
angle)}{}$$
 Empirical estimation

- Objective function: regularized maximum likelihood estimation
- Disadvantage: summation over both training and test samples in CV.