Direct Density Ratio Estimation
for Large-scale Covariate Shift Adaptation

Yuta Tsuboi (*), Hisashi Kashima, Shohei Hido,
IBM Research, Tokyo Research Laboratory

* Nara Institute of Science and Technology

Steffen Bickel,

Max Planck Institute for Computer Science

Masashi Sugiyama

Tokyo Institute of Technology, Department of Computer Science

© 2008 IBM Corporation




SIAM Conference on Data Mining (SDMO08)

Table of Contents

1. Motivation

= Covariate shift situation

= Direct density estimation methods

2. Proposed Method
= LL-KLIEP: Log-linear model for KLIEP

* Log-linear model: natural modeling for density ratio function
- Standard optimization techniques to learn a density ratio function
= LL-KLIEP(LS): Another optimization technique for LL-KLIEP

= For applications with large numbers of unlabeled test inputs

Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation © 2008 IBM Corporation




SIAM Conference on Data Mining (SDMO08)

Covariate shift situation
Training and test inputs x follow different distributions

= Input distribution changes: P rain (X) 7 P (X)

= Functional relation remains unchanged:
ptrain (y | X) - ptest (y | X)

Classification
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ptrain (X) < ptest (X)
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Examples of covariate shift situation

Domain Adaptation & Selective Sampling (Active Learning)

= Domain adaptation of statistical classifiers

— The data distribution in the test domain is different from that in the

training domain.

(Note: the functional relation can also be changed)

* E.g.: Spam filters can be trained on public collections of spam, but
are applied to an individual person's inbox. (Personalization)
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= Selective sampling (active learning) of statistical classifiers

— The learning algorithm can actively query the teacher for labels.

— Since the learner chooses the examples by design,

the data distribution of
the labeled training examples is
different from that of a sample pool.

Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation
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A common approach for covariate shift situation
Weighting the training examples by importance.

= Density ratio (importance): W(X)— ptest(X)

ptrain (X)
= Example: Importance Weighted Logistic Regression (IWLR)
- Weighted Log-likelihood for Logistic Regression (LR)

| [P ()P ([ X)py (v [ %) dxdy  Labloqwaning s
N LR model ‘:é(’ : 3 W(X)<1

N j j P train (X)II?L((XX)) p(y|x)logp,(y|x)dxd

(X,)€Z ain /\
N Density ratio

Training data (Importance) Log-likelihood
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We need to estimate the density ratio from samples.
Importance Estimation

= Problem setting: i.i.d. training and test samples are
given

Training inputs: /), {xl.}l].iti from Ptrain(X)

Testinputs: /), Z{x.}].itle from P (X)

1) test

= Naive approach: estimate Prn(¥)and Pe.(X) separately,
and take the ratio of the density estimates

= However, density P(x) estimation is the hard problem
particularly in high dimensional cases.
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Modeling Density ratio by Log-linear Model

= We use a log-linear model: o : model parameter

() = exp((a, Y(x))) ¥ (x) : basis function
ﬁ meeaw exp({a, ¥(x’))) < , > . inner product
" Training data set

~ w(x) takes only non-negative values.

—~>natural modeling for ratio (@ and ¥ (x) can be an arbitrary
value)

— The denominator guarantees p,,, (X) be a probability density
function

= Test density is approximated by P (X)

.............................. ptest (X): ptml-n — = N 7
ﬁte(iﬂ) = ptr(m).-afr(m)_4 .................................................................... M

= Learn o so that ﬁtest(x) approximates ptest(x) well.
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Kullback—Leibler (KL) Divergence

= Minimize KL divergence between p (x) and p,_, (x) :

arg minKL[ptest (X) ‘ ‘ IS test (X )]

KL[p e (%) | et ()]

- .[ptest (X)l()g A pteSt (X) dX

P train (X )ﬁ/(x)

= Iptest (X)l()g pteSt (X) dX - Iptest (X)l()g W(X)dx
ptrain ( ) R

_ X —

Bres (%) = Py (x)iv(x)

—~

—~,
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Kullback-Leibler Importance Estimation Procedure (KLIEP)
for Log-linear Models: LL-KLIEP

= Thus, arg minKL[ptest (X) D s (X)]

<> arg max I P (X)log W(x) dx

a

= Empirical approximation of objective function (LL-KLIEP)

e o) [OBEGNEHIRGHON

ﬂ-'rEDte

JiL—krLiep(

"‘]‘LL—KL]EP
1
== y:(a,ij;( —log— Zexp x)))
te ecDie mEDtr
~—

v

Training data set

Test data set

= Unconstraint convex optimization:

— standard gradient ascent method can be used.

— unique global solution is available.
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Mean Matching via LL-KLIEP

= Gradient of the objective function

OJ 1 kirep (a) _ I Z“l//(x)_L ZW(X)(//(X)

oo N N

test XE€D o train X€D
The mean of Test data The mean of Weighted Training data
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Samples were generated from two Gaussian distributions.
We used 100 Gaussian basis functions (Gaussian kernels)
centered at randomly chosen test input samples.

Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation © 2008 IBM Corporation




SIAM Conference on Data Mining (SDMO08)

Model selection of KLIEP/LL-KLIEP
Likelihood Cross Validation (LCV)

= The performance of KLIEP depends on the choice of the basis functionsw(x)

- How to choose hyper parameters, e.g., the kernel width s for Gaussian

kernels:

e 2
K= 2,

952

= However, the correct value ff importance for each x is not available

unknown distributions Psin

X) and Pt (X)

—> unsupervised learning setting

= LCV: Select the model such that maximized J(ﬂf)
1. Divide test samples into R disjoint subsets: { D }* ,
2. Learn importance: w'(x) from {DEE},:R%T -

3. Evaluate a model by likelihood: |

for

R

> (@)
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Classification example under Covariate shift
2-dimensional samples were generated from Gaussian
listributi

Training pe (2, y) Test pie(x,y)

= We used Importance Weighted Logistic y=0 y=1 y=0 =1
-1-1) (3-1) | (0,35) (4,2.5)

025 0
0 0.25

Regression (IWLR)

=

025 0
I

Tramme(clazs 0}
&  Trainingfclass 1) { /
Test(clasz 0) - @ :
% Test{class 1)

L4

(a) pie(ae) 1s linearly shifted from py (2).
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Classification example under Covariate shift
2-dimensional samples were generated from Gaussian

distributions
= We used Importance Weighted  #

(-1,0) (4,2) (0,2) (3,1)

Logistic Regression (IWLR). > (0-75 0 ) (8’8? g?)

0 1.5

Training(class 0) f
Training(class 1) ! e B
Test{class 0) T

- & Test{class 1)

oome

(b) pte(z) is rotated from py,(x).
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_ ptest(x)
Related Work of Density Ratio Estimation wlx)= P (X)

= Kernel density estimator (KDE)
— Separately estimate training and test input densities.
— Gaussian kernel width is chosen by likelihood cross-validation.

= Kernel Mean Matching (KMM) (Huang et al., NIPS2006)

— Direct importance estimation method in universal reproducing kernel
Hilbert spaces (RKHS)

— There is no model selection method for kernel width.

= Logistic regression (LogReg) (Beckel et al., ICML2007)
— Classifier discriminating training and test input data.
— Gaussian kernel width is chosen by likelihood cross-validation.

= Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama
et al., NIPS2007)

— Direct importance estimation method using KL Divergence.
— Gaussian kernel width is chosen by likelihood cross-validation.
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Experiments per(x) = N(04,13)
varying input dimension pre(x) = N((1,0,...,0)7,0.75%1,)

2 LL-KLIEP
= RLIEP
A KDE
] KMM(0.1)

KMM(1.0)
- LogReg -

& NMSE:
' Normalized Mean Squared Error

2
) - NMSE = . |
e Ngr mEZDu( Em’EDtr ’w(;t:") ZE’ED“ 'I.U(.'I!")

Mean NMSE
0.00000  0.00024  0.00048 000072  0.00096  0.00120

L3
& - @
Lo =% = ¥
e ’: e e W . 5
=T R s g B s n B BT RETEE KDE: Suffers from the curse of
dimensionality

= - om4
|

4 6 8 10 12 14 16 18 20 KMM: Performance depends on
Input Dimension kernel width

KLIEP, LogReg, and LL-KLIEP: Model selection by LCV works well
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Disadvantage: LL-KLIEP and previous methods require to use
all test inputs in their optimization procedure.

= We need to iterate over all test inputs when computing the values
of the objective function:

J 11 xump ( Z< ; l// > log Z 10g< ; l// )>
tGSt XEDteSt traln xeD train
Evaluation over Test data set Evaluation over Training data set

= However, the gradient of the objective function requires the
evaluation of all test samples once.

OJ 1 kirep (a) __ l//(X)'— - Z w X)(//

od, N

traln X ED traln

Independent from o - Pre-computing the value
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An optimization technique w/o the objective function evaluation

LL-KLIEP(LS1)

= |dea: the derivative of the convex objective function to be zero at the
optimum point.
- Minimizing a squared norm to measure the ‘magnitude’ of the

derivative:
a]LL—KLIEP ((l)

|
J LL-KLIEP(LS1) — 5 oa

= Computation time & memory size are independent of N,

2

— However, the derivative is a quadratic function of the number of
parameters, which could be a bottleneck in high dimensional problems.

J LL-KLIEP(LS1) ((l) _ 82J LL—KLIEP ((l) oJ LL—-KLIEP ((l)

a o%a ou
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LL-KLIEP(LS) for the high-dimensional data
LL-KLIEP(LS2)

= |dea: representing the parameter a as a linear combination of
the training inputs (representer theorem (Wahba 1990)):

where {5;}zcp, Isa data-wise parameter.

—Now, the computation time is linear w.r.t. the number of
parameters, a (quadratic w.r.t. the number of the training
inputs, N

train)-
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LL-KLIEP (LS): No iteration and no storage for N, in
optimization - Well-suited to the applications with the large
amount of test samples

Computational complexity and space requirements. Ny, is the num-
ber of training samples. N is the number of test samples, b is the

munber of parameters. and ¢ is the average munber of non-zero basis

entries.
Computational complexity Space requirement
Pre. Comp. (once) | Objective | Derivative | Objective | Derivative
KLIEP 0 BN, +bBN,. | BN +bBN,, | eNy,+eN | eN+eN,.
LI-KLIEP bNie BN +BN,, bV iy N+ N e eNir
LI-KLIEP(LS1) BN, BN, b2 N, N, b? +eNy,
LL-KLIEP(LS2) bNia bNZ BNZ Ny NZ 4eNy;

= LL-KLIEP (LS1) : For lower-dimensional and large-scale training
data.

= LL-KLIEP (LS2): For higher-dimensional and moderate-size training
data.

© 2008 IBM Corporation
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Average computation time (including Pre-comp.)

over 100 trials

We varied the number of test inputs, and fixed the number of training inputs.

10

o
g A
é _
ﬂ
g i
(]
- X * x K
R
4 = dboe — i e ¥ =%
i iy
"I“E |
| I | I |
10° 10° 10 10° 108
Number of Test Samples

stimation for Large-scale Covariate Shift Adaptation

= we used linear basis function
so that the number of bases is
equivalent to the input
dimension.

= d: input dimension =
#parameter,
N,: The number of training
inputs,
N,.: The number of test inputs

The computation time
of LL-KLIEP(LS) is

independent from the
number of test inputs.
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Average computation time (including Pre-comp.) over 100 trials
We varied the number of test inputs, and fixed the number of training inputs.

= d: input dimension = #parameter,
N,: The number of training inputs, N,.: The number of test inputs

+ n A A
4. LL-KLIEP A
+- LL-KLIEP(LSI)
o | |7 LL-KLEPILSY) S _
A : - »
® X b4 ]
PO Ex—&xﬂ .
+-. -
e i
= )
B A = ‘v LL-KLIEP
-+- LL-ELIEPLSI)
—— LL-ELIER{LSI)
L- L
! ! ! ! ! SR | | | |
10 10° 10° 10° 10° 0? s 10° 108 i
Number of Test Samples
(b) d = 100, Nt = 100 (c) d = 1000, Ny, = 100
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Conclusion

= We proposed a density ratio estimation method called
LL-KLIEP.

= We also proposed a scalable optimization technique
for LL-KLIEP, in which all the test inputs are iterated
once.

— The computation time is nearly independent of the
amount of test data

— The memory requirement is independent of the
amount of test data.
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Thank you!
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KLIEP/LL-KLIEP objective functions

= KLIEP has a Iog form in the evaluation of test inputs.

JKLEIP Z:log< ,\|; >|
test XeD k= ——————~=
subject to Z<a, \|I(X)> =], anda >0

train X€D train

aJKLEIP(a)_ 1 Z ‘V(X)

do N 5 {o,y(x))

= LL-KLIEP has a linear form in the evaluation of test inputs.

J11 kiEp ((1)= Nl Z‘):—<‘_1: \|_1(_X_)>_I:— log : | Z.eXp<(1, ‘V(X»
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Kullback-Leibler Importance Estimation Procedure
(KLIEP) for Log-linear Models: LL-KLIEP

= Regularized version of LL-KLIEP

1
JNa) = (o, Y(x))
Nte :BEZDtE ’% regularizer
— log . Z exp({a, P(z))) — |2]|*
” Nt'r T 20'2

: Gradient of the objective function

a.? Z w Nl. w(x)

= el
B exp({a. ¥(x))) o2
mEZD D ol eDss em((a.ﬂ!)(m’mw =
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LL-KLIEP(LS) for the high-dimensional data
LL-KLIEP(LS2)

= |dea: representing the parameter a as a linear combination of
the training inputs (representer theorem (Wahba 1990)):

where {5;}zcp, Isa data-wise parameter.

O
F— 3 (@) — 3 "[’(m;f

xrc Dy, xr= Dy a

2

o 1
Js(1 Pz tzen,) = 5
where . |
. EKI}(Z:::’ED“ K(z. ') e )
EJ‘:”EDU Exl}(zm:EDtr I‘:(ﬂ:’”, Sﬂ'r).lﬁmf } )
K(z.a') = ((z), ¥ ().
— Now, the computation time is linear w.r.t. the number of parameters
(quadratic w.r.t. the number of the training inputs).

w(z)
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Related work: Kernel Mean Matching (KMM)
LL-KLIEP (LS2) without a regularizer has the same form as

the objective function of KMM.

_ 1
min — Y w(@)w(@ Kz, 2')— ) w(@)k(z)

{w(m}}meﬂtr < 3 2'cDyr =

subject to Z w(xe) — Nip| < Nie, and
:I:E.Dt.r

0 <w(xe) < B for all x € Dy,.

where Disadvantage of KMM.
_ Ny Z K / The estimates of w(x) are
(. ). _ g
' only available for training

samples—> Cannot optimize
hyper parameters by CV

tlE) =
( *"?Vte 2'cDi.

= The objective function of LL-KLIEP (LS2):

Y w(@)w(d) Kz, z') — ) w(z)k(z),

x,x' €Dy xc Dy

LS| —
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Related work: Logistic regression (LogReg)
Classifier discriminating training and test input data

= Selector variable J = -1 to the training input samples and J = 1 to the
test input samples:

pur(@) = p(x|0 = —1), pre(x) = p(x|d =1)

p(6=—-1) p(6=1z)
p6=1) p(0= 1z’

The conditional probability p( d jx) may be learned by discriminating
between the test input samples and the training input samples using LR,
where O plays the role of a class variable.

Importance can be

w(zx) =

ﬁ Empirical estimation
Objective function: regularized maximum likelihood estimation

Disadvantage: summation over both training and test samples in CV.
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Related work:
Kernel density estimator (KDE)

= Estimating ptrain(x) and Ptest(x) separately.

= KDE: non-parametric density estimator

1 N
ﬁ(ﬂj) — ZKS(;E?“:I)!
=1

~ (2ws?)4/2N

= KDE suffers from the curse of dimensionality
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An example of supervised learning under covariate shift
Importance weighted logistic regression (IWLR)

= Logistic Regression (LR) : binary case

(o) — —EPWIo()
1 +exp(yfo(x))

* LR classifier j — argmaxpe(y|x)

. . Y
= Training LR:
Density ratio is used as weights in the log-likelihood
function

3" w(z) (log (1+exp (yfo(x))) —yfo(x)) +A[ 6]

{m:y}Eztr ﬂ
o /\;
Density ratio

Training data Log-likelihood Regularizer
A : a hyper parameter
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