

Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation

Yuta Tsuboi (*), Hisashi Kashima, Shohei Hido,

IBM Research, Tokyo Research Laboratory

* Nara Institute of Science and Technology

Steffen Bickel,

Max Planck Institute for Computer Science

Masashi Sugiyama

Tokyo Institute of Technology, Department of Computer Science

Table of Contents

- Motivation
 - Covariate shift situation
 - Direct density estimation methods
- 2. Proposed Method
 - LL-KLIEP: Log-linear model for KLIEP
 - Log-linear model: natural modeling for density ratio function
 - Standard optimization techniques to learn a density ratio function
 - LL-KLIEP(LS): Another optimization technique for LL-KLIEP
 - For applications with large numbers of unlabeled test inputs

Covariate shift situation

Training and test *inputs* x follow different distributions

Input distribution changes:

$$p_{train}(\mathbf{x}) \neq p_{test}(\mathbf{x})$$

Functional relation remains unchanged:

$$p_{train}(y \mid \mathbf{x}) = p_{test}(y \mid \mathbf{x})$$

Classification under Covariate Shift

Examples of covariate shift situation Domain Adaptation & Selective Sampling (Active Learning)

Domain adaptation of statistical classifiers

- The data distribution in the test domain is different from that in the training domain. (Note: the functional relation can also be changed)
 - E.g.: Spam filters can be trained on public collections of spam, but are applied to an individual person's inbox. (Personalization)

Selective sampling (active learning) of statistical classifiers

The learning algorithm can actively query the teacher for labels.

 Since the learner chooses the examples by design, Selecting & Labeling the data distribution of the labeled training examples is different from that of a sample pool. train

A common approach for covariate shift situation Weighting the training examples by <u>importance</u>.

- Density ratio (importance): $w(\mathbf{x}) = \frac{\mathbf{p}_{\text{test}}(\mathbf{x})}{\mathbf{p}_{\text{train}}(\mathbf{x})}$
- Example: Importance Weighted Logistic Regression (IWLR)
 - Weighted Log-likelihood for Logistic Regression (LR)

We need to estimate the density ratio from samples. **Importance Estimation**

Problem setting: i.i.d. training and test samples are given

Training inputs:
$$D_{tr} = \{x_i\}_{i=1}^{N_{tr}}$$
 from $P_{train}(\mathbf{x})$

Test inputs:
$$D_{\text{te}} = \{x_i\}_{i=1}^{N_{\text{te}}} \text{ from } P_{\text{test}}(\mathbf{x})$$

- Naïve approach: estimate $P_{train}(\mathbf{x})$ and $P_{test}(\mathbf{x})$ separately, and take the ratio of the density estimates
- However, density P(x) estimation is the hard problem particularly in high dimensional cases.

Table of Contents

- Motivation
 - Covariate shift situation
 - Direct density estimation methods
- 2. Proposed Method
 - LL-KLIEP: Log-linear model for KLIEP
 - Log-linear model: natural modeling for density ratio function
 - Standard optimization techniques to learn a density ratio function
 - LL-KLIEP(LS): Another optimization technique for LL-KLIEP
 - For applications with large numbers of unlabeled test inputs

Modeling Density ratio by Log-linear Model

We use a log-linear model:

 α : model parameter

- $-\hat{w}(\mathbf{x})$ takes only non-negative values.
- \rightarrow natural modeling for ratio (α and $\psi(x)$ can be an arbitrary value)
- The denominator guarantees $\hat{p}_{test}(\mathbf{x})$ be a probability density function
- Test density is approximated by

t density is approximated by
$$\hat{p}_{te}(\boldsymbol{x}) = p_{train}(\boldsymbol{x}) \cdot \frac{p_{test}(\boldsymbol{x})}{p_{train}(\boldsymbol{x})}$$

• Learn lpha so that $\hat{p}_{test}(\mathbf{x})$ approximates $p_{test}(\mathbf{x})$

Kullback—Leibler (KL) Divergence

Minimize KL divergence between $p_{\text{test}}(\mathbf{x})$ and $\hat{p}_{\text{test}}(\mathbf{x})$:

$$\underset{\alpha}{\operatorname{arg\,minKL}}[p_{test}(\mathbf{x}) || \, \hat{p}_{test}(\mathbf{x})]$$

$$\hat{p}_{test}(\mathbf{x}) = p_{train}(\mathbf{x})\hat{w}(\mathbf{x})$$

$$KL[p_{test}(\mathbf{x}) \| \, \hat{p}_{test}(\mathbf{x})]$$

$$= \int p_{test}(\mathbf{x}) \log \frac{p_{test}(\mathbf{x})}{\hat{p}_{train}(\mathbf{x}) \hat{w}(\mathbf{x})} d\mathbf{x}$$

$$= \int p_{\text{test}}(\mathbf{x}) \log \frac{p_{\text{test}}(\mathbf{x})}{p_{\text{train}}(\mathbf{x})} d\mathbf{x} - \int p_{\text{test}}(\mathbf{x}) \log \hat{w}(\mathbf{x}) d\mathbf{x}$$

constant

relevant

Kullback-Leibler Importance Estimation Procedure (KLIEP) for Log-linear Models: LL-KLIEP

- Thus, $\underset{\text{arg minKL}}{\text{Imp}} \left[p_{\text{test}}(\mathbf{x}) \| \hat{p}_{\text{test}}(\mathbf{x}) \right]$ \Leftrightarrow arg max $\int p_{test}(\mathbf{x}) \log \hat{w}(\mathbf{x}) d\mathbf{x}$
- Empirical approximation of objective function (*LL-KLIEP*)

$$J_{LL-KLIEP}(\boldsymbol{\alpha}) = \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \log \hat{w}(\boldsymbol{x})$$

Objective function

- Unconstraint convex optimization:
 - standard gradient ascent method can be used.
 - unique global solution is available.

Mean Matching via LL-KLIEP

Gradient of the objective function

$$\frac{\partial J_{\text{LL-KLIEP}}(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} = \frac{1}{N_{\text{test}}} \sum_{\mathbf{x} \in D_{\text{test}}} \psi(\mathbf{x}) - \frac{1}{N_{\text{train}}} \sum_{\mathbf{x} \in D_{\text{train}}} w(\mathbf{x}) \psi(\mathbf{x})$$
The mean of Test data

The mean of Weighted Training data

At the optimum, the mean $\psi(\mathbf{x})$ of test inputs = the mean $\psi(\mathbf{x})\psi(\mathbf{x})$ of training inputs.

→ Finding w(x) matching the mean of two distributions.

Samples were generated from two Gaussian distributions. We used 100 Gaussian basis functions (Gaussian kernels) centered at randomly chosen test input samples.

$$\hat{w}(\boldsymbol{x}) = \frac{\exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle)}{\frac{1}{N_{tr}} \sum_{\boldsymbol{x}' \in D_{tr}} \exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}') \rangle)} \quad \psi_l(\mathbf{x}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_l^{\text{test}}\|^2}{2s^2}\right)$$

Training and Test Densities

X

Estimated Importance

Model selection of KLIEP/LL-KLIEP **Likelihood Cross Validation (LCV)**

- The performance of KLIEP depends on the choice of the basis functions $\psi(x)$
 - → How to choose hyper parameters, e.g., the kernel width s for Gaussian kernels:

$$K_s(x, x_l) = \exp\left\{-\frac{\|x - x_l\|^2}{2s^2}\right\},$$

- However, the correct value of importance for each **x** is not available for unknown distributions $p_{train}(\mathbf{x})$ and $p_{test}(\mathbf{x})$
 - → unsupervised learning setting
- LCV: Select the model such that maximized $\mathcal{I}(\alpha)$
 - 1. Divide test samples into R disjoint subsets: $\{D_{te}^r\}_{r=1}^R$
 - 2. Learn importance: $\hat{w}^r(x)$ from $\{D_{te}^t\}_{t\neq r}^R$
 - 3. Evaluate a model by likelihood:

Classification example under Covariate shift 2-dimensional samples were generated from Gaussian distributions

 We used Importance Weighted Logistic Regression (IWLR)

	Training $p_{\rm tr}(\boldsymbol{x},y)$		Test $p_{\text{te}}(\boldsymbol{x}, y)$		
	y = 0	y = 1	y = 0	y = 1	
μ	(-1,-1)	(3,-1)	(0,3.5)	(4,2.5)	
Σ	$\begin{pmatrix} 0.25 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 0.25 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.25 \end{pmatrix}$	

Correct classification rate of LR is 99.1% while that of IWLR is 100%.

(a) $p_{te}(\boldsymbol{x})$ is linearly shifted from $p_{tr}(\boldsymbol{x})$.

Classification example under Covariate shift 2-dimensional samples were generated from Gaussian distributions

 We used Importance Weighted Logistic Regression (IWLR).

$$\begin{array}{c|ccc}
\mu & (-1,0) & (4,2) \\
\Sigma & \begin{pmatrix} 0.75 & 0 \\ 0 & 1.5 \end{pmatrix}
\end{array}$$

$$\begin{pmatrix} 0.2 \end{pmatrix} & (3,1) \\ \begin{pmatrix} 0.75 & 0.5 \\ 0.01 & 0.1 \end{pmatrix}$$

Correct classification rate of LR is 97.2% while that of IWLR is **99.1%.**

Related Work of Density Ratio Estimation

$$w(\mathbf{x}) = \frac{p_{\text{test}}(\mathbf{x})}{p_{\text{train}}(\mathbf{x})}$$

- Kernel density estimator (KDE)
 - Separately estimate training and test input densities.
 - Gaussian kernel width is chosen by likelihood cross-validation.
- **Kernel Mean Matching (KMM)** (Huang *et al.*, NIPS2006)
 - Direct importance estimation method in universal reproducing kernel Hilbert spaces (RKHS)
 - There is no model selection method for kernel width.
- **Logistic regression (LogReg)** (Beckel *et al.*, ICML2007)
 - Classifier discriminating training and test input data.
 - Gaussian kernel width is chosen by likelihood cross-validation.
- Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama et al., NIPS2007)
 - Direct importance estimation method using KL Divergence.
 - Gaussian kernel width is chosen by likelihood cross-validation.

Experiments varying input dimension

$$p_{\text{tr}}(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{0}_d, \boldsymbol{I}_d)$$

$$p_{\text{te}}(\boldsymbol{x}) = \mathcal{N}((1, 0, \dots, 0)^{\top}, 0.75^2 \boldsymbol{I}_d)$$

Mean NMSE over 100 trials.

KMM (s) denotes KMM with kernel width s

NMSE:

Normalized Mean Squared Error

$$\text{NMSE} = \frac{1}{N_{\text{tr}}} \sum_{\boldsymbol{x} \in D_{\text{tr}}} \left(\frac{\hat{w}(\boldsymbol{x})}{\sum_{\boldsymbol{x}' \in D_{\text{tr}}} \hat{w}(\boldsymbol{x}')} - \frac{w(\boldsymbol{x})}{\sum_{\boldsymbol{x}' \in D_{\text{tr}}} w(\boldsymbol{x}')} \right)^{2}.$$

KDE: Suffers from the curse of dimensionality

KMM: Performance depends on kernel width

KLIEP, LogReg, and LL-KLIEP: Model selection by LCV works well

Table of Contents

- Motivation
 - Covariate shift situation
 - Direct density estimation methods
- 2. Proposed Method
 - LL-KLIEP: Log-linear model for KLIEP
 - Log-linear model: natural modeling for density ratio function
 - Standard optimization techniques to learn a density ratio function
 - LL-KLIEP(LS): Another optimization technique for LL-KLIEP
 - For applications with large numbers of unlabeled test inputs

Disadvantage: LL-KLIEP and previous methods require to use all test inputs in their optimization procedure.

We need to iterate over all test inputs when computing the values of the **objective function**:

$$J_{\text{LL-KLIEP}}(\boldsymbol{\alpha}) = \frac{1}{N_{\text{test}}} \sum_{\mathbf{x} \in D_{\text{test}}} \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle - \log \frac{1}{N_{\text{train}}} \sum_{\mathbf{x} \in D_{\text{train}}} \log \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle$$
Evaluation over Test data set
Evaluation over Training data set

However, the gradient of the objective function requires the evaluation of all test samples once.

$$\frac{\partial J_{\text{LL-KLIEP}}(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} = \frac{1}{N_{\text{test}}} \sum_{\mathbf{x} \in D_{\text{test}}} \psi(\mathbf{x}) - \frac{1}{N_{\text{train}}} \sum_{\mathbf{x} \in D_{\text{train}}} w(\mathbf{x}) \psi(\mathbf{x})$$

Independent from $\alpha \rightarrow$ Pre-computing the value

An optimization technique w/o the objective function evaluation LL-KLIEP(LS1)

- Idea: the derivative of the convex objective function to be zero at the optimum point.
 - → Minimizing a squared norm to measure the 'magnitude' of the derivative:

Objective function for LL-KLIEP(LS1)
$$J_{\text{LL-KLIEP(LS1)}} = \frac{1}{2} \left\| \frac{\partial J_{\text{LL-KLIEP}}(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} \right\|^{2}$$

- Computation time & memory size are independent of N_{test}.
 - However, the derivative is a quadratic function of the number of parameters, which could be a bottleneck in high dimensional problems.

The partial derivative of LL-KLIEP(LS1)

$$\frac{J_{\text{LL-KLIEP(LS1)}}(\boldsymbol{\alpha})}{\boldsymbol{\alpha}} = \frac{\partial^2 J_{\text{LL-KLIEP}}(\boldsymbol{\alpha})}{\partial^2 \boldsymbol{\alpha}} \frac{\partial J_{\text{LL-KLIEP}}(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}}$$

LL-KLIEP(LS) for the high-dimensional data LL-KLIEP(LS2)

• Idea: representing the parameter α as a linear combination of the training inputs (representer theorem (Wahba 1990)):

$$\alpha = \sum_{\boldsymbol{x} \in D_{\mathrm{tr}}} \psi(\boldsymbol{x}) \beta_{\boldsymbol{x}}$$

where $\{\beta_{\boldsymbol{x}}\}_{\boldsymbol{x}\in D_{\mathrm{tr}}}$ is a data-wise parameter.

 Now, the computation time is linear w.r.t. the number of parameters, α (quadratic w.r.t. the number of the training inputs, N_{train}).

LL-KLIEP (LS): No iteration and no storage for N_{te} in optimization -> Well-suited to the applications with the large amount of test samples

Computational complexity and space requirements. $N_{\rm tr}$ is the number of training samples, N_{te} is the number of test samples, b is the number of parameters, and c is the average number of non-zero basis entries.

	Computational complexity			Space requirement	
,	Pre. Comp. (once)	Objective	Derivative	Objective	Derivative
KLIEP	0	$bN_{\mathrm{tr}} + bN_{\mathrm{te}}$	$bN_{ m tr} + bN_{ m te}$	$cN_{\mathrm{tr}} + cN_{\mathrm{te}}$	$cN_{\mathrm{tr}} + cN_{\mathrm{te}}$
LL-KLIEP	$bN_{ m te}$	$bN_{\mathrm{tr}} + bN_{\mathrm{te}}$	$bN_{ m tr}$	$cN_{\mathrm{tr}}\!+\!cN_{\mathrm{te}}$	$cN_{ m tr}$
LL-KLIEP(LS1)	$bN_{ m te}$	$bN_{ m tr}$	$b^2 N_{ m tr}$	$cN_{ m tr}$	$b^2\!+\!cN_{\mathrm{tr}}$
LL-KLIEP(LS2)	$bN_{ m te}$	$bN_{ m tr}^2$	$bN_{ m tr}^2$	$cN_{ m tr}$	$N_{\rm tr}^2 + cN_{\rm tr}$

- LL-KLIEP (LS1): For lower-dimensional and large-scale training data.
- LL-KLIEP (LS2): For <u>higher-dimensional</u> and moderate-size training data.

Average computation time (including Pre-comp.)

over 100 trials

We varied the number of test inputs, and fixed the number of training inputs.

- we used linear basis function so that the number of bases is equivalent to the input dimension.
- d: input dimension = #parameter, N_{tr}: The number of training inputs,

N_{te}: The number of test inputs

The computation time of LL-KLIEP(LS) is independent from the number of test inputs.

Average computation time (including Pre-comp.) over 100 trials We varied the number of test inputs, and fixed the number of training inputs.

d: input dimension = #parameter,
 N_{tr}: The number of training inputs, N_{te}: The number of test inputs

Moderate-dimensional data

Higher-dimensional data

(b)
$$d = 100, N_{tr} = 100$$

(c)
$$d = 1000, N_{tr} = 100$$

Conclusion

- We proposed a density ratio estimation method called LL-KLIEP.
- We also proposed a scalable optimization technique for LL-KLIEP, in which all the test inputs are iterated once.
 - The computation time is nearly independent of the amount of test data
 - The memory requirement is independent of the amount of test data.

Thank you!

KLIEP/LL-KLIEP objective functions

KLIEP has a log form in the evaluation of test inputs.

$$J_{\text{KLEIP}}(\boldsymbol{\alpha}) = \frac{1}{N_{\text{test}}} \sum_{\mathbf{x} \in D_{\text{test}}} \log \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle,$$

subject to
$$\frac{1}{N_{\text{train}}} \sum_{\mathbf{x} \in D_{\text{train}}} \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle = 1$$
, and $\boldsymbol{\alpha} \ge 0$

$$\frac{\partial J_{\text{KLEIP}}(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} = \frac{1}{N_{\text{test}}} \sum_{\mathbf{x} \in D_{\text{test}}} \frac{\boldsymbol{\psi}(\mathbf{x})}{\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle}$$

LL-KLIEP has a linear form in the evaluation of test inputs.

$$J_{\text{LL-KLEIP}}(\boldsymbol{\alpha}) = \frac{1}{N_{\text{test}}} \sum_{\mathbf{x} \in D_{\text{test}}} \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle - \log \frac{1}{N_{\text{train}}} \sum_{\mathbf{x} \in D_{\text{train}}} \exp \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\mathbf{x}) \rangle$$

Kullback-Leibler Importance Estimation Procedure (KLIEP) for Log-linear Models: LL-KLIEP

Regularized version of LL-KLIEP

$$\begin{split} \jmath(\alpha) &= \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle \\ &- \log \frac{1}{N_{tr}} \sum_{\boldsymbol{x} \in D_{tr}} \exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle) - \frac{||\boldsymbol{\alpha}||^2}{2\sigma^2} \end{split}$$
 regularizer

Gradient of the objective function

$$\frac{\partial \jmath(\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} = \frac{1}{N_{te}} \sum_{\boldsymbol{x} \in D_{te}} \boldsymbol{\psi}(\boldsymbol{x}) \frac{\frac{1}{N_{\text{train}}} w(\boldsymbol{x})}{\sum_{\boldsymbol{x} \in D_{tr}} \frac{\exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}) \rangle)}{\sum_{\boldsymbol{x}' \in D_{te}} \exp(\langle \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{x}') \rangle)} \boldsymbol{\psi}(\boldsymbol{x}) - \frac{\boldsymbol{\alpha}}{\sigma^2}$$

At the optimum, the mean $\psi(\mathbf{x})$ of test inputs = the mean $\psi(\mathbf{x})\psi(\mathbf{x})$ of training inputs.

LL-KLIEP(LS) for the high-dimensional data LL-KLIEP(LS2)

• Idea: representing the parameter α as a linear combination of the training inputs (representer theorem (Wahba 1990)):

$$\alpha = \sum_{\boldsymbol{x} \in D_{tx}} \psi(\boldsymbol{x}) \beta_{\boldsymbol{x}}$$

where $\{\beta_{\boldsymbol{x}}\}_{\boldsymbol{x}\in D_{\mathrm{tr}}}$ is a data-wise parameter.

Objective function for LL-KLIEP(LS2)

$$j_{\text{LS}}(\{\beta_{\boldsymbol{x}}\}_{\boldsymbol{x}\in D_{\text{tr}}}) = \frac{1}{2} \left\| F - \sum_{\boldsymbol{x}\in D_{\text{tr}}} \psi(\boldsymbol{x})\omega(\boldsymbol{x}) - \sum_{\boldsymbol{x}\in D_{\text{tr}}} \frac{\psi(\boldsymbol{x})\beta_{\boldsymbol{x}}}{\sigma^2} \right\|^2$$

where

$$\omega(\boldsymbol{x}) = \frac{\exp(\sum_{\boldsymbol{x}' \in D_{tr}} K(\boldsymbol{x}, \boldsymbol{x}') \beta_{\boldsymbol{x}'})}{\sum_{\boldsymbol{x}'' \in D_{tr}} \exp(\sum_{\boldsymbol{x}' \in D_{tr}} K(\boldsymbol{x}'', \boldsymbol{x}') \beta_{\boldsymbol{x}'})},$$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \langle \psi(\boldsymbol{x}), \psi(\boldsymbol{x}') \rangle.$$

 Now, the computation time is linear w.r.t. the number of parameters (quadratic w.r.t. the number of the training inputs).

Related work: Kernel Mean Matching (KMM) LL-KLIEP (LS2) without a regularizer has the same form as the objective function of KMM.

Moment matching method:

nent matching method: Objective function for KMM
$$\min_{\{\boldsymbol{w}(\boldsymbol{x})\}_{\boldsymbol{x}\in D_{\mathrm{tr}}}} \left[\frac{1}{2}\sum_{\boldsymbol{x},\boldsymbol{x}'\in D_{\mathrm{tr}}} w(\boldsymbol{x})w(\boldsymbol{x}')K_s(\boldsymbol{x},\boldsymbol{x}') - \sum_{\boldsymbol{x}\in D_{\mathrm{tr}}} w(\boldsymbol{x})\kappa(\boldsymbol{x})\right]$$
 subject to
$$\left|\sum_{\boldsymbol{x}\in D_{\mathrm{tr}}} w(\boldsymbol{x}) - N_{\mathrm{tr}}\right| \leq N_{\mathrm{tr}}\epsilon, \text{ and }$$

$$0 \leq w(\boldsymbol{x}) \leq B \text{ for all } \boldsymbol{x}\in D_{\mathrm{tr}},$$

where

$$\kappa(\boldsymbol{x}) = \frac{N_{\mathrm{tr}}}{N_{\mathrm{te}}} \sum_{\boldsymbol{x}' \in D_{\mathrm{te}}} K_s(\boldsymbol{x}, \boldsymbol{x}').$$
 The estimates of w(x) are only available for training

The objective function of LL-KLIEP (LS2):

Disadvantage of KMM.

samples → Cannot optimize hyper parameters by CV

$$\frac{1}{2} \sum_{\boldsymbol{x}, \boldsymbol{x}' \in D_{tr}} w(\boldsymbol{x}) w(\boldsymbol{x}') K_s(\boldsymbol{x}, \boldsymbol{x}') - \sum_{\boldsymbol{x} \in D_{tr}} w(\boldsymbol{x}) \kappa(\boldsymbol{x}),$$

Related work: Logistic regression (LogReg) Classifier discriminating training and test input data

• Selector variable δ = -1 to the training input samples and δ = 1 to the test input samples:

$$p_{\rm tr}(x) = p(x|\delta = -1), \quad p_{\rm te}(x) = p(x|\delta = 1)$$

- Importance can be $w(x)=rac{p(\delta=-1)}{p(\delta=1)}rac{p(\delta=1|x)}{p(\delta=-1|x)}.$
- The conditional probability $p(\delta jx)$ may be learned by discriminating between the test input samples and the training input samples using LR, where δ plays the role of a class variable.

$$\hat{w}(x) = rac{N_{
m tr}}{N_{
m te}} rac{\exp(\langle m{lpha}, m{\psi}(x)
angle)}{}$$
 Empirical estimation

- Objective function: regularized maximum likelihood estimation
- Disadvantage: summation over both training and test samples in CV.

Related work: Kernel density estimator (KDE)

- Estimating $p_{train}(\mathbf{x})$ and $p_{test}(\mathbf{x})$ separately.
- KDE: non-parametric density estimator

$$\hat{p}(x) = \frac{1}{(2\pi s^2)^{d/2} N} \sum_{l=1}^{N} K_s(x, x_l),$$

KDE suffers from the curse of dimensionality

An example of supervised learning under covariate shift Importance weighted logistic regression (IWLR)

Logistic Regression (LR): binary case

$$p_{\theta}(y|x) = \frac{\exp(yf_{\theta}(x))}{1 + \exp(yf_{\theta}(x))}$$

- LR classifier $\hat{y} = \operatorname{argmax} p_{\boldsymbol{\theta}}(y|x)$
- Training LR: Density ratio is used as weights in the log-likelihood function

