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Abstract

We propose a new loss function for discriminative
learning of Markov random fields, which is an interme-
diate loss function between the sequential loss and the
pointwise loss. We show this loss function has “Markov
property”, that is, the importance of correct labeling
for a particular position depends on the numbers of the
correct labels around there. This property works to keep
local consistencies among the assigned labels, and is
useful for optimizing systems identifying structural seg-
ments, such as information extraction systems.

1 Introduction

The sequence labeling problem is an important gen-
eralization of the supervised classification problem,
where the labels for a set of target variables are to be
predicted when the labels for a set of observed vari-
ables are given. Many real-world tasks are formalized
as sequence labeling problems in various fields such as
natural language processing and bioinformatics. For ex-
ample, information extraction is one of the most impor-
tant applications of labeling problems, whose purpose
is to identify semantic segments in sequences. The hid-
den Markov model (HMM) has been successful in the
sequence labeling problem for years. Recently, condi-
tional models such as the maximum entropy Markov
model (MEMM) [5] and the conditional random field
(CRF) [4] (Section 2) have been attracting considerable
attentions because of their capabilities to allow over-
lapping features, and their performances overwhelming
that of HMM. Especially, CRF is considered as one of
the state-of-the-art labelers.

There are several works on designing and comparing
various loss functions (i.e. objective functions) for la-
beling problems [1, 2, 3]. Two important classes of the
loss functions are the sequential loss and the pointwise
loss [3]. The sequential loss is the original objective
function that maximizes the sum of log-likelihoods, and

the pointwise loss maximizes the sum of marginal log-
likelihoods with target variables fixed at each position.
This indicates that the sequential loss aims to correctly
predict the whole target variables in a sequence. On the
other hand, the pointwise loss aims to correctly predict
each of the target variables as many as possible. When
applying the two loss functions to information extrac-
tion tasks, the sequential loss has a possibility of result-
ing in a bad performance in difficult problems with rel-
atively small training data, on the other hand, the point-
wise loss is not enough to represent the aim to extract
segments adequately.

In Section 3, we propose the mixed loss, which is an
intermediate loss function between the sequential loss
and the pointwise loss defined as a linear combination
of the sequential loss and the pointwise loss. We show
that the mixed loss has a “Markov property”, that is, the
importance of correct labeling for a particular position
depends on the numbers of the correct labels around
there. Therefore, our new loss function is expected to
be useful to predict clusters of correct labels.

Section 4 demonstrates that the proposed method is
promising by preliminary experiments in natural lan-
guage processing, and Section 5 concludes this paper.

2 Objective Function for Sequence Label-
ing

Let x = (z1,22,...,27),2; € X, be a set of ob-
served variables, and y = (y1,v2,...,yr),y: € Xy be
aset of target variables, where 33, and X, are the sets of
labels for the observed and the target variables, respec-
tively. Figure 1 is a graph representation of an example
in a part-of-speech tagging task, where x; indicates the
t-th word, and y, indicates the part-of-speech tag for the
t-th word.

Given the labels for the observed variables in x,
we want to assign a correct label to each of the target
variables in y. For this goal, we may exploit training
data, F = (6(1), e@ . ,e(‘ED), whose i-th example
ise® = (@ y®) and || = |y = T,
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Figure 1. A graph representation of a se-
quence in part-of-speech tagging tasks.
Given z as the sentence “the, man, saw
, -+, glasses.”, y as the part-of-speech
tags for the sequence, e.g. “DT, NN, VBD,
..., NNS”, are to be predicted.
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Figure 2. Each feature is defined as a pair
of two consecutive variables such as (a) a
pair of an observed variable and a target
variable, or (b) a pair of two target vari-
ables.

The model of CRF is an extension of multi-class lo-
gistic regression with multiple target variables,

L _ol(0,0(.y)
) = (6.0 (.0)))°

where © is the vector of the model parameters, and
®(x,y) is the feature vector for (x,y). Each element
¢; of ®(x,y) is the number of times the i-th feature
appears in (x,y). Usually, each feature is defined to
be a pair of consecutive two variables such as in Fig-
ure 2. One type of such features is a pair of an ob-
served variable and a target variable (Figure 2(a)), and
the other is a pair of two target variables (Figure 2(b)).
Given the labels for , the labels for y are predicted by
argmax,, f(y|x).

The model is trained by finding the optimal parame-
ters that minimize a loss function. In the original CRF
model [4], the sum of negative log-likelihoods is used
as the loss function.

Definition 1 (Sequential loss function [2]). The se-

quential loss function Ly is defined as

Ly = =) log f(y?|z).

Let us consider the implication of the sequential loss
function L. This loss function tries to learn the param-
eters that predict the labels for the whole target vari-
ables in a sequence simultaneously, since the likelihood
of the set of target variable y(*) for each example is
maximized in this loss. However, there is a possibility
of resulting in a bad performance in difficult problems
with relatively small training data since a large negative
weight is given to the features whose transitions was
never observed in the training set. In addition, there
are some tasks, e.g. part-of-speech tagging, where it is
enough to correctly predict target variables as many as
possible.

Based on those ideas, Kakade et al. [3] proposed an-
other loss function Lg, which is based on the marginal
likelihood Pr(y; = ygi)|az(i)) of the label yt(i) at each
position ¢.

Definition 2 (Pointwise loss function [3]). The point-
wise loss function L is defined as

(@)
Lo = =Y Y log Y f(glz®), )
i t=1 5:Ge=y

where Zy:ut:ui“ indicates summation over all possible
label assighmérits for the target variables with the t-th
target variable fixed as yt(z) € Xy

The pointwise loss function L aims to correctly pre-
dict each of the target variables as many as possible.
and does not care the consistencies among consecutive
labels. The pointwise loss function is experimentally
shown to be competitive to the sequential loss [1, 3].

The above loss functions and their derivatives can
be calculated efficiently by using the dynamic program-
ming technique.

3 A New Objective Function with Markov
Property

Although each of the objective functions reviewed
in the previous section makes sense in each context, we
might imagine an intermediate situation where it is de-
sired to correctly predict clusters of variables. For ex-
ample, in information extraction tasks such as named
entity recognition and protein secondary structure pre-
diction, we want to find local segments that indicate
named entities, alpha helices or beta sheets regions, and
they are represented as clusters of labels.



Therefore, a suitable loss function for information
extraction is the one with the characteristics of both L4
and Lg. In other words, we want a loss function with
“Markov property”, that is, the importance of correct
labeling for a particular position depends on the num-
bers of the correct labels around there. We define the
following new loss function Ly for this purpose.

Definition 3 (\-mixed loss function). For a given con-
stant 0 < \ < 1, we call

L)\ = ALl + (]. - )\)L() (2)

the A\-mixed loss function. We can see this loss function
lies between the sequential loss and the pointwise loss,
since Ly is identical to Ly when A = 0, and identical to
L, when \ = 1.

On first sight, the new objective function does not
seem to enhance local consistencies of labels, but we
can show that it really does in sequence labeling. Now
let us consider another loss function defined as follows.
Definition 4 (k-th order Markov loss function). For a

given integer k > 0, we call

7
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k-th order Markov loss function. y, fort < 1 andt >
T are dummy variables which always take a special
label 0y, i.e. Tz = Yy = 0.
In contrast with the marginal likelihood (1) fixing only
one target variable at a time, The k-th order Markov loss
function M}, fixes k + 1 consecutive target variables at
a time. Therefore, this loss function tries to correctly
predict as many chunks of length k£ + 1 as possible.
Now, we obtain the following main theorem that
claims equivalence of the mixed loss and the Markov
loss.

Theorem 1. For any integer k > 0, let

A= &)

_k
k+1
Then,

1

1—-A
Proof. By simple algebraic substitutions. [

Ly = M.

This theorem indicates that, for any positive inte-
ger k > 0, the minimization of ﬁL,\ is equivalent
to the minimization of M}, by choosing A that satisfies
(4). Therefore, our new loss function works for correct
prediction of labels while keeping local consistencies
among them and we can see sequential loss and point-
wise loss are the special cases of the Markov loss when
k = oo and k = 0, respectively.

In above case, since we inherently assumed that k is
integer, corresponding A can take only discrete values.
Then, what if & is not integer, i.e. |k| < k < [k] ? In-
tuitively, L is just an intermediate loss between M)
and M. The following two corollaries are easily de-
rived from Theorem 1. The first one just justifies this
intuition, and the other gives another interpretation.

Corollary 1. Forany k > 0, let \ = k/(k + 1).
Then,
1

1—A

Ly = ([k] = k)M + (k = [k]) M. (5)

Note that, since 0 < [k] — k,k — | k| < 1and ([k] —
k) + (k — |k]) = 1, Ly is just an internally dividing
point between M| and M.

From another perspective, this can be understood as
a weighted sum of Markov losses with exponentially
decaying weights.
Corollary 2. Forany 0 < A < 1,

1 =
1_)\LA7(17)\);)\ M,. (6)

This weighted sum gives large weights to M, with
small x, and the weight decays exponentially as x be-
comes larger. ) is the parameter controlling the speed
of the decay, and small A\ means fast decay. This corol-
lary related a weighted sum of Markov losses to Ly
with a particular 0 < A < 1, and we can interpret that
the mixed loss cares not only for a particular length of
chunks, but also all length of chunks by weighting them
depending on their lengths.

4 Experiment

We compared the performances of the three objec-
tive functions, the sequential loss, the pointwise loss,
and the mixed loss for CRF on a Named Entity Recogni-
tion task (NER). The NER task is a subtask of informa-
tion extraction which deals with identifying phrases that
contain the names of persons, organizations, locations,
times and quantities in sentences. We used the Span-
ish corpus provided for the shared task of CoNLL2002
on NER [6]. The corpus is composed of a training
set, a development set, and a test set, which contain
8,322 (264,680), 1,914 (52,849), and 1,516 (51,487)
sentences (tokens), respectively. Each of the tokens in
the corpus is annotated with one of the 9 kinds of target
labels, i.e. |X,| = 9. The average phrase length of the
named entities is 1.74.

We conducted two types of experiments, an exper-
iment following the standard procedure of the shared



task of CoNLL 2002, and an experiment evaluating the
performances for various sizes of the training sets. In
the first experiment, CRF with each loss function was
trained by using the training set. The development data
was used for tuning the regularization parameter. In the
second experiment, we used the first 100, 200, 300, 600,
and 1000 sentences of the training set. Both the de-
velopment set and the test set were used in evaluation
phase. In this experiment, we did not use the regular-
ization term in the objective functions to concentrate on
the comparison of the performances of loss functions.
In both experiments, we defined the features by follow-
ing the S3 definition in [2]. The parameters were esti-
mated by using the conjugate gradient descent method.

Table 1 shows the results according to the standard
procedure of the shared task of CoNLL 2002. The col-
umn “point”, “k=[", and “seq” represent the results of
pointwise loss function, mixed (I-th Markov) loss func-
tion, and sequential loss function, respectively. Under
the “Markov loss” interpretation of the proposed loss
function, we investigated the performances varying the
parameter k from 1 to 4. The performances were evalu-
ated according to P(recision), R(ecall), and F1 measure
on the test set. Precision is the percentage of named
entities found that are correct. Recall is the percent-
age of found named entities present in the corpus. F1
measure is the harmonic mean of the precision and re-
call. The results indicate that the performances of the
proposed loss function are competitive with the exist-
ing loss functions. Especially, the k& = 3 Markov loss
slightly performs better than others. Since the average
length of named entities is 1.74, this results agree with
our intuitions since the size of segment plus two repre-
sents proper local consistency to recognize the edges of
segment.

Table 2 shows the results of the NER task varying
training data sizes. We compared the performances of
sequential loss, pointwise loss, and mixed losses vary-
ing the parameter k from 1 to 4. The performances were
evaluated according to the average F1 measure of devel-
opment set and test set.

In total, the pointwise loss and the mixed loss show
higher performance than the sequential loss, though the
difference between the pointwise loss and the mixed
loss was not stable when the size of training data was
varied. The CRFs trained on mixed loss with k& = 3
and 2 perform better than the others with the smaller
training data sets of 100 and 200. With the larger train-
ing data sets, the performances of pointwise loss and
mixed loss with k& = 1 show higher performance than
the others. This empirical result suggests that the pro-
posed loss function works well for relatively small data
sets.

Table 1. Precision, Recall, and F1 measure
according to the standard evaluation pro-
cedure of CoNLL-2002 NER shared task.

| point k=1 k=2 k=3 k=4  seq

P | 7791 7796 7795 78.10 78.03 78.10
R [ 76.71 7685 76.88 7696 76.85 76.85
F1 | 7730 7740 7741 7753 7743 7747

Table 2. The average F1 measure of NER
varying the size of training data set.

Size | point k=1 k=2 k=3 k=4 seq
100 | 4536 46.12 4696 46.94 4272 43.96
200 | 47.76 4739 47.44 4777 4730 47.16
300 | 53.37 5291 52.68 5292 5286 5240
600 | 59.32 58.68 5825 58.11 57.34 56.00

1000 | 61.26 6191 6138 6133 6134 61.05

5 Conclusion

We proposed a new loss function called the mixed
loss for information extraction, which is an intermediate
loss function between the two loss functions, sequential
loss and pointwise loss. We showed its “Markov prop-
erty”, that is, the importance of correct labeling for a
particular position depends on the numbers of the cor-
rect labels around there.
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