Yuta Tsuboi <<u>tsuboi@preferred.jp</u>> Preferred Networks, Inc.

Data

Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions [Hatori+, 2017] https://arxiv.org/abs/1710.06280

Data is king

Can you beat the baseline method using 10x more data?

#citations: ImageNet vs. Dropout

Note: Figures are retrieved from Google scholar

	TITLE	CITED BY	YEAR
ImageNet	Imagenet: A large-scale hierarchical image database J Deng, W Dong, R Socher, LJ Li, K Li, L Fei-Fei Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on …	5315	2009
9200+	Imagenet large scale visual recognition challenge O Russakovsky, J Deng, H Su, J Krause, S Satheesh, S Ma, Z Huang, International Journal of Computer Vision 115 (3), 211-252	3973	2015
	TITLE	CITED BY	YEAR
Dropout	Dropout: a simple way to prevent neural networks from overfitting. N Srivastava, GE Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov Journal of machine learning research 15 (1), 1929-1958	4272	2014
6500+	Improving neural networks by preventing co-adaptation of feature detectors GE Hinton, N Srivastava, A Krizhevsky, I Sutskever, RR Salakhutdinov arXiv preprint arXiv:1207.0580	2295	2012

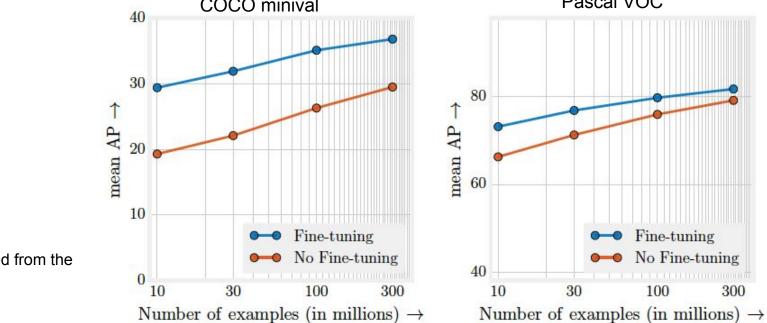

Datasets vs. Algorithms

Figure is retrieved from http://www.spacemachine.net/views/2016/3/datasets-over-algorithms

Year	Breakthroughs in Al	Datasets (First Available)	Algorithms (First Proposed)	
1994	Human-level spontaneous speech recognition	Spoken Wall Street Journal articles and other texts (1991)	Hidden Markov Model (1984)	
1997	IBM Deep Blue defeated Garry Kasparov	700,000 Grandmaster chess games, aka "The Extended Book" (1991)	Negascout planning algorithm (1983)	
2005	Google's Arabic- and Chinese-to-English translation	1.8 trillion tokens from Google Web and News pages (collected in 2005)	Statistical machine translation algorithm (1988)	
2011	IBM Watson became the world Jeopardy! champion	8.6 million documents from Wikipedia, Wiktionary, Wikiquote, and Project Gutenberg (updated in 2010)	Mixture-of-Experts algorithm (1991)	
2014	Google's GoogLeNet object classification at near-human performance	ImageNet corpus of 1.5 million labeled images and 1,000 object categories (2010)	Convolution neural network algorithm (1989)	
2015	Google's Deepmind achieved human parity in playing 29 Atari games by learning general control from video	Arcade Learning Environment dataset of over 50 Atari games (2013)	Q-learning algorithm (1992)	
Avera	Average No. of Years to Breakthrough: 3 years 18 years			

Performance increases linearly with orders of magnitude of training data!

Revisiting Unreasonable Effectiveness of Data in Deep Learning Era [Sun+,
2017]COCO minivalPascal VOC

Figures are retrieved from the original paper

Supervised Data

 Manual annotations (the first wave)

RefCOCO+

guy in yellow dirbbling ball yellow shirt and black shorts yellow shirt in focus

https://github.com/lichengunc/refer

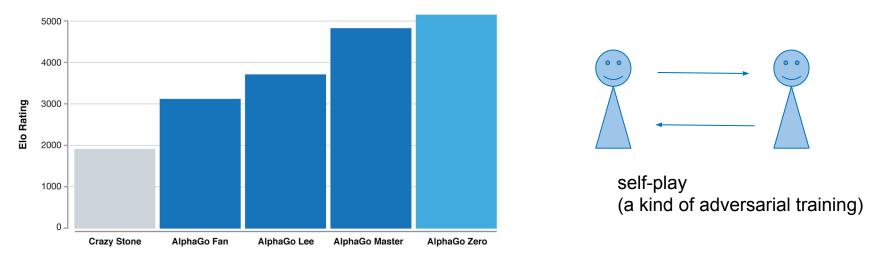
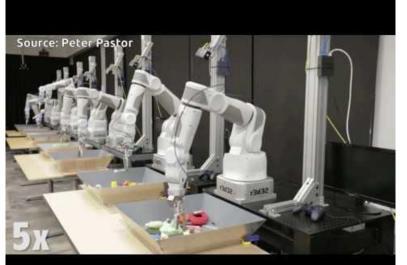
Logs of human/bussiness activities (the second wave)

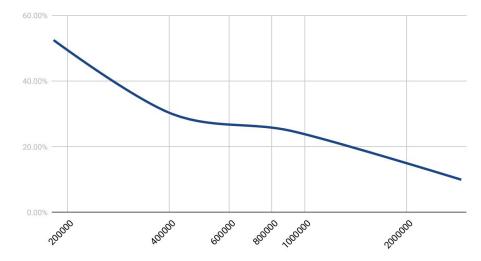
The third wave

• Self-play / self-supervised data

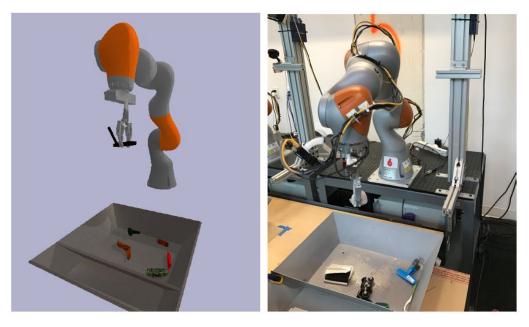
AlphaGo Zero [Silver+, 2017] → Self-play data

- Learning from scratch: learns to play simply by playing games against itself
 - AlphaGo was initially trained on thousands of human games

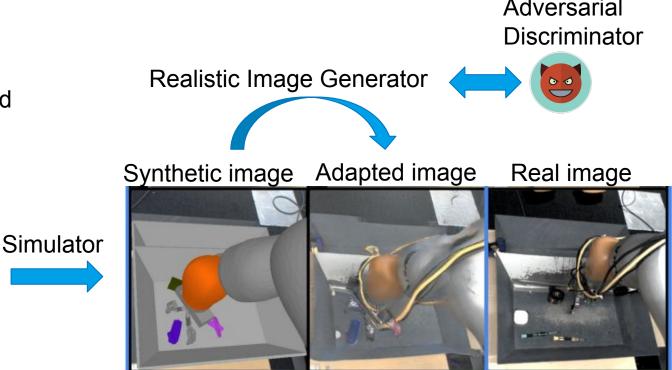

Figure is retrieved from https://deepmind.com/blog/alphago-zero-learning-scratch/

Self-supervised data for visual robot control Two months using 6 - 14 robotic manipulators


Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection [Levin+, 2016]

Failure rates of grasp for varying dataset sizes

Self-supervised data generated by simulator


Physical experiments are extremely time-consuming and expensive \rightarrow Using simulator to generate synthetic experience (2K simulated robots)

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping [Bousmalis+, 2017]

Bridging the reality gap by domain adaptation techniques [Bousmalis+, 2017] Adversarial

Procedurally generated random objects

Figures are retrieved from the original paper

Take-home messages

- Data might be the key limiting factor to development of AI
- Self-play or self-supervised data could be the third wave
- Simulators could exceed the limit of physical environment

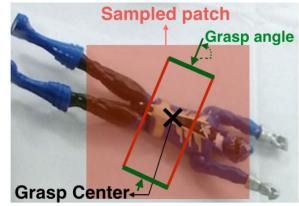


Figure is retrieved from [Pinto and Gupta, 2015]